THE

CARBONIFEROUS AMMONOIDS OF AMERICA

BY

JAMES PERRIN SMITH

WASHINGTON
GOVERNMENT PRINTING OFFICE
1903
<table>
<thead>
<tr>
<th>CONTENTS.</th>
<th>Page.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of transmittal</td>
<td>9</td>
</tr>
<tr>
<td>Preface</td>
<td>11</td>
</tr>
<tr>
<td>Stratigraphy of the American Carboniferous</td>
<td>13</td>
</tr>
<tr>
<td>Lower Carboniferous</td>
<td>13</td>
</tr>
<tr>
<td>Kinderhook</td>
<td>13</td>
</tr>
<tr>
<td>Osage</td>
<td>14</td>
</tr>
<tr>
<td>St. Louis-Chester</td>
<td>14</td>
</tr>
<tr>
<td>Upper Carboniferous</td>
<td>15</td>
</tr>
<tr>
<td>Lower Coal Measures</td>
<td>15</td>
</tr>
<tr>
<td>Middle Coal Measures</td>
<td>15</td>
</tr>
<tr>
<td>Upper Coal Measures</td>
<td>15</td>
</tr>
<tr>
<td>Permian</td>
<td>16</td>
</tr>
<tr>
<td>Correlation table of the Carboniferous</td>
<td>17</td>
</tr>
<tr>
<td>Classification of Paleozoic ammonoids</td>
<td>19</td>
</tr>
<tr>
<td>Table of Paleozoic ammonoid genera</td>
<td>22</td>
</tr>
<tr>
<td>Ammonoids of the American Carboniferous</td>
<td>25</td>
</tr>
<tr>
<td>Genera represented</td>
<td>25</td>
</tr>
<tr>
<td>Table of occurrence of ammonoid genera in the American Carboniferous</td>
<td>27</td>
</tr>
<tr>
<td>Table of species described</td>
<td>28</td>
</tr>
<tr>
<td>Descriptions of the species</td>
<td>31</td>
</tr>
<tr>
<td>Bibliography</td>
<td>147</td>
</tr>
<tr>
<td>Explanations of plates</td>
<td>151</td>
</tr>
<tr>
<td>Index</td>
<td>207</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS.

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate I. Phylogenic table of the Paleozoic ammonoids</td>
<td>22</td>
</tr>
<tr>
<td>II. Phylogenic table of Glyptioceratida</td>
<td>58</td>
</tr>
<tr>
<td>III. Figs. 1-3, Schistioceras hildrethi Morton; figs. 3-18, Schumardites simondsi Smith</td>
<td>154</td>
</tr>
<tr>
<td>IV. Figs. 1-3, Goniodoboceras goniodobum Meek; figs. 4-8, Gastrioceras kingi Hall and Whittfield; figs. 9-11, Paralegoceras baylorense White; figs. 12-14, Paralegoceras iowense Meek and Worthen</td>
<td>156</td>
</tr>
<tr>
<td>V. Figs. 1 and 2, Pronorites brownense Miller; figs. 3 and 4, Muensteroceras iowense Miller; figs. 5-7, Prolecanites compactus Meek and Worthen; figs. 8-10, Gastrioceras iowense Cox; fig. 11, Nomismoceras iowense Worthen</td>
<td>158</td>
</tr>
<tr>
<td>VI. Fig. 1, Gastrioceras globulosa Meek and Worthen; figs. 2-5, Gastrioceras latiscorpus Miller and Gurley; figs. 6-8, Prolecanites latiscorpus Rowley; figs. 9-11, Bactrites carbonarius Smith</td>
<td>160</td>
</tr>
<tr>
<td>VII. Agonites opimus White and Whittfield; Agonites striatus Sowerby</td>
<td>162</td>
</tr>
<tr>
<td>VIII. Fig. 1, Schistioceras missouriensis Miller and Faber; figs. 2 and 3, Agonites sciostenis Miller and Faber; figs. 4 and 5, Prolecanites greenii Miller; figs. 6 and 7, Gastrioceras occidentalis Miller and Faber; figs. 8 and 9, Goniodoboceras iowense Miller and Faber; figs. 10 and 11, Glyptioceras levisculum Miller and Faber</td>
<td>164</td>
</tr>
<tr>
<td>IX. Figs. 1-3, Gastrioceras compressa Hyatt; figs. 4-7, Paralegoceras iowense Meek and Worthen</td>
<td>166</td>
</tr>
<tr>
<td>X. Figs. 1-11, Gastrioceras striatus Sowerby; figs. 12-16, Gastrioceras crenatia Phillips; figs. 17-19, Gastrioceras ctenogonum Gabbi</td>
<td>168</td>
</tr>
<tr>
<td>XI. Figs. 1-4, Gastrioceras carbonarius von Buch; figs. 5-7, Pronorites siebenthalii Smith; figs. 8-13, Gastrioceras broweri Smith</td>
<td>170</td>
</tr>
<tr>
<td>XII. Figs. 1 and 2, Pronorites procericum Karpinsky; fig. 3, Pronorites cyclophus Phillips; figs. 4-9, Paralegoceras novoumi Smith; fig. 10, Glyptioceras diadema Goldfuss; fig. 11, Tornoceras retroversum von Buch; figs. 12-15, Pronorites cyclophus Phillips var. arkanascons Smith</td>
<td>172</td>
</tr>
<tr>
<td>XIII. Figs. 1-5, Pronorites cyclophus Phillips; figs. 6-15, Gastrioceras hystri Martin</td>
<td>174</td>
</tr>
<tr>
<td>XIV. Gastrioceras crenatia Phillips, larval stages</td>
<td>176</td>
</tr>
<tr>
<td>XV. Gastrioceras crenatia Phillips, development from adolescence to maturity</td>
<td>178</td>
</tr>
<tr>
<td>XVI. Fig. 1, Gastrioceras crenatia Phillips, development of the septa; fig. 2, Gastrioceras xerolamp Meek; fig. 3, Muensteroceras parallela Hall; figs. 4-5, Pericyclus blairi Miller and Gurley; figs. 6-8, Milleroceras parrishi Miller and Gurley; figs. 9-11, Neocas dotyae Miller and Gurley; figs. 12-14, Gastrioceras montgomeryensis Miller and Gurley; figs. 15-17, Schistioceras fultonense Miller and Gurley; fig. 18, Prolecanites kochi Meek and Worthen; fig. 19, Agonites rotatorius de Koninck; fig. 20, Pericyclus kochi Holzapfl; fig. 21, Popanooceras pareri Heilprin</td>
<td>180</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS.

PLATE XVII. Fig. 1, Goniatites kentuckiensis Miller; figs. 2-5, Goniatites nevsoni Smith; figs. 6-8, Gastroceras illinoiscense Miller and Gurley; figs. 9-11, Gastroceras kansasense Miller and Gurley; figs. 12-14, Goniatites greenacastknsis Miller and Gurley; figs. 15-17, Gastroceras subelatum Miller and Gurley; figs. 18-20, Aganides jessica Miller and Gurley.. 182

XVIII. Glyphioceras calyx Phillips, development from early larval stage to maturity. 184

XIX. Figs. 1-2, Muensteroceras paraleculus Hall; figs. 3-8, Muensteroceras oweni Hall; figs. 9-11, Prolococites lyoni Meek and Worthen; figs. 12-14, Aganides rotatorius de Koninck......................... 186

XX. Figs. 1-8, Schistoceras hyatti Smith; figs. 9-11, Goniolobceras welleri Smith; figs. 12-15, Dimorphoceras texanum Smith................................. 188

XXI. Figs. 1-6, Goniolobceras welleri Smith; figs. 7-9, Gastroceras globulosum Meek and Worthen; figs. 10-13, Schistoceras hyatti Smith; figs. 14-16, Popanoceras ganti Smith; figs. 17-19, Agathiceras einoecum Smith; figs. 20-22, Schuchertites grahanni Smith 190

XXII. Figs. 1-3, Medlicottia copei White; figs. 4-8, Waagenoceras eunmiini White; figs. 9-11, Popanoceras walcotti White.. 192

XXIII. Prodromites gorbyi Miller......................... 194

XXIV. Figs. 1-4, Prodromites garleny Smith; figs. 5-7, Aganides discoidalis Smith; figs. 8-12, Muensteroceras osygenae Swallow; figs. 13-20, Gastroceras welleri Smith...... 196

XXV. Figs. 1 and 2, Prodromites gorbyi Miller; figs. 3 and 4, Prodromites prcmaturus Smith and Weller; fig. 5, Hedenstrwmia mojsisovici Diener; figs. 6-8 Prodromites ornatus Smith 198

XXVI. Figs. 1-5, Goniatites cecridin Pliihlps; figs. 6-13, Goniatites striatus Sowerby; figs. 14-18, Goniatites subcircularis Miller... 200

XXVII. Waagenoceras hilli Smith................................. 202

XXVIII. Gastroceras excelsum Meek.................................. 204

XXIX. Gastroceras excelsum Meek.................................. 206
LETTER OF TRANSMITTAL.

Stanford University, Cal., May 17, 1901.

Sir: I have the honor to transmit herewith the manuscript and drawings for a paper entitled The Carboniferous Ammonoids of America, in which all the Carboniferous ammonoid genera and species known in America are listed, described, and, where possible, figured.

A phylogenic classification of the Paleozoic ammonoids is attempted, which, it is hoped, will prove useful to students of systematic paleontology.

Very respectfully,

James Perrin Smith.

Hon. Charles D. Walcott,
Director United States Geological Survey.
PREFACE.

A number of years ago the writer began his studies of American Carboniferous ammonoids with the preparation of a report on Marine Fossils from the Coal Measures of Arkansas for the geological survey of Arkansas, under the directorship of Prof. John C. Branner, State geologist. This work has been continued uninterruptedly since then in connection with the writer's studies in the cephalopods of the Trias.

In the prosecution of these studies the writer has spent much time in the field in Arkansas and Texas, and has had access to the material collected by the geological surveys of those two States.

The writer desires to make acknowledgment to the gentlemen named below for courtesies in the loan of specimens and for assistance in the prosecution of this work:

Dr. John C. Branner, of Leland Stanford Junior University, formerly State geologist of Arkansas, for the opportunity of studying the collections of Carboniferous cephalopods made by the geological survey of Arkansas.

Dr. Stuart Weller, of the University of Chicago, for the opportunity of studying the Gurley collection (the richest in the United States in Carboniferous ammonoids), for the loan of specimens and drawings, and for much valuable assistance.

Prof. Alpheus Hyatt, for the loan of specimens and for valuable advice and suggestions.

Prof. Robert T. Jackson, of Harvard University, for the loan of specimens.

Mr. Charles Schuchert, of the U. S. National Museum, for the use of specimens.

Messrs. E. T. Dumble and W. F. Cummins, of the geological survey of Texas, and Prof. F. W. Simonds, of the University of Texas, for the opportunity of studying the collections of the geological survey and of the university.

Mr. G. A. Graham and Dr. Gant, of Graham, Tex., for the gift of valuable specimens.
THE CARBONIFEROUS AMMONOIDS OF AMERICA.

By James Perrin Smith.

STRATIGRAPHY OF THE AMERICAN CARBONIFEROUS.

LOWER CARBONIFEROUS.

Kinderhook.—The oldest Carboniferous fauna of America is typically developed in the northern part of the Mississippi Valley, where the formations in which it is found have been called Kinderhook, Chouteau, Marshall, and Waverly. Ammonoids of this epoch are best known from the goniatite beds of Rockford, Ind., where the following species have been found: Prolecanites lyoni Meek and Worthen, Aganides rotatorius de Koninck, Muensteroceras oweni Hall, M. parallelum Hall, Prodromites gorbyi Miller, P. prematurus Smith and Weller. In addition to these, the Kinderhook stage of other parts of the State has furnished Prolecanites greenii Miller and Muensteroceras indianense Miller. The Chouteau limestone near Sedalia and Louisiana, Mo., has also furnished a number of ammonoids: Prolecanites louisianensis Rowley, P. discoidalis Smith, Aganides jessie Miller and Gurley, A. discoidalis Smith, Prodromites gorbyi Miller, P. ornatus Smith, Pericyclus blairi Miller and Gurley, Muensteroceras? holmesi Swallow, M.? morganense Swallow, and M.? osagensc Swallow.

The Kinderhook stage of Iowa has furnished *Prodromites gorbyi* Miller, *Agoniatites opimus* White and Whitfield.

Cephalopod faunas of the Tournaisian formation, the European equivalent of the Kinderhook, are known at Tournai in Belgium, Erdbach in Germany, and in Ireland, where the most characteristic genera are *Aganides*, *Prolocanites*, *Pericyclus*, and *Muensteroceras*, some of the species probably being identical with American forms.

Cephalopod faunas of Tournaisian age are not yet known elsewhere in the world.

Osage.—While marine deposits of Osage or Burlington-Keokuk age are widely distributed in America, ammonoids are cited from but two places—from the Burlington limestone of Louisiana, Mo. (*Muensteroceras? osagense* Swallow), and from the Upper Waverly formation of Ohio (*Aganides? sciotensis* Miller and Faber).

The only goniatite found in Illinois in this formation is *Nomismoceras? monroense* Worthen.

The lower part of the St. Louis-Chester stage in Arkansas, the so-called Fayetteville shale, has yielded *Bactrites carbonarius* Smith, *Glyphioceras calyx* Phillips, *Gonioceras crenistria* Phillips, *G. newsomi* Smith, *G. sphaericus* Martin, *G. striatus* Sowerby, *G. subcircularis* Miller. The upper part of the St. Louis-Chester in Arkansas, the Boston group, has yielded *Promorites cyclolebus* Phillips, var. *arkansasensis* Smith, and *Gastrioceras breameri* Smith.

The Bend formation of Texas, which has been assigned by the writer to the St. Louis-Chester, has yielded *Gonioceras crenistria* Phillips, *G. striatus* Sowerby, *Gastrioceras compressum* Hyatt, *G. entogonum* Gabb, *Paralegoceras iowense* Meek and Worthen, and *P. texanum* Shumard.

Cephalopod faunas of St. Louis-Chester age are known in the Visé formation of Europe at Visé in Belgium, at Bolland in Yorkshire; in the Culm of the Hartz Mountains; in the upper Kohlenkalk of Silesia; and in the Carboniferous limestone of the Pyrenees in Spain. The most char-
STRATIGRAPHY OF AMERICAN CARBONIFEROUS.

15

characteristic forms of the Visé formation are Goniatites crenistria Phillips, G. sphæricus Martin, G. striatus Sowerby, Glyphioceras calyx Phillips, all of which occur in America in the same horizon.

UPPER CARBONIFEROUS.

Lower Coal Measures.—Goniatites are known certainly in America from the Lower Coal Measures at but a single locality, near Morrillton, in Arkansas, where Paralegoceras newsomi Smith was found; this rarity of cephalopods from this horizon is due in part to the fact that the marine beds of the Lower Coal Measures have been deposited chiefly in the Southwest, and that most of this time is represented in Missouri, Illinois, Indiana, and adjacent States by an erosion interval.

Middle Coal Measures.—The Middle or Productive Coal Measures have furnished goniatites in but few places. The following fossils have been found in this formation: In Illinois, Prolecanites? compactus Meek and Worthen, Glyphioceras hathawayanum McChesney; in Iowa, Paralegoceras iowense Meek and Worthen; in Kentucky, Gastrioceras occidentale Miller and Faber, G. nolinense Cox, Neoicoceras elkhorncense Miller and Gurley, Goniatites lunatus Miller and Gurley; in Arkansas, Gastrioceras excelsum Meek, G. globulosum Meek and Worthen, G. carbonarium Buch, G. listeri Martin, Ptomorites siebenstjali Smith; in Missouri, Goniatites politus Shumard, Gastrioceras welleri Smith; in Texas, Pohanoceras parkeri Heilprin.

This formation has commonly been called Lower Coal Measures in the States within the Mississippi Valley, but it does not form the bottom of the series, and in Arkansas is separated from the limestones of the Mississippian by several thousand feet of shales and sandstones—the so-called Arkansan formation.

This fauna is represented in the zone of Gastrioceras listeri in western Europe, especially in Silesia, Belgium, and England.

Upper Coal Measures.—The Upper Coal Measures have furnished the following species: In Illinois, Gastrioceras globulosum Meek and Worthen, G. montgomeryense Miller and Gurley, G. illinoiscense Miller and Gurley, Gonioloboceras welleri Smith, Schistoceras fultonense Miller and Gurley; in Ohio, Schistoceras hildrethi Morton, "Goniatites" colubrellus Morton; in Missouri, Milleroceras parrishi Miller and Gurley, Gastrioceras excelsum Meek, G. kansasense Miller and Gurley, G. planorbiforme Shumard, G.
subcavum Miller and Gurley, Schistoceras missouriense Miller and Faber; in Kansas, "Goniatites" parvus Shumard; in Texas, Gonioloboceras welleri Smith, Dimorphoceras texanum Smith, Agathiceras ciscoense Smith, Popano-
ceras ganti Smith, Shumardites simondsi Smith, Schistoceras hildrethi Morton,
S. hyatti Smith, Gastrioceras globulosum Meek and Worthen, G. subcavum
Miller and Gurley, Schuchertites grahami Smith. All these Texas species
came from Graham, in the Cisco formation, associated with a
typical Upper Coal Measures fauna. Many of the other species are identical with
forms in the Uralian formation, but the numerous ammonites are more
highly developed than any known in the European Upper Coal Measures;
the nautiloids found in the Graham beds are mostly identical with forms
that also occur in the overlying Wichita Permian, as are also most of the
other invertebrates. But the stratigraphic position is about 1,000 feet
below the Wichita beds, in a region where the structure is exceedingly
simple, the strata being nearly horizontal, thus precluding the possibility
of a mistake in the stratigraphy.

Permian.—Ammonoids are at present known in the American Permian
only in Texas, in Wichita, Baylor, Archer, and Kent counties. The geological
survey of Texas recognized two divisions of this group: (1) The
Wichita and Clear Fork beds, from which Dr. C. A. White\(^a\) described
the following forms: Paralegoceras baylorence White, Popanoceras valeotti
White, Waagenoceras cumminsi White, Medllicottia copei White; (2) the
Double Mountain beds, from which only a single ammonite is known,
Waagenoceras hilli Smith, described in this paper.

The Wichita beds are generally correlated with the Artinsk stage of
Russia, the Fusulina limestone of Sosio in Sicily, and the Middle Productus
limestone of India, some of the ammonite species being very nearly
related in all these localities.

The Double Mountain beds are probably Upper Permian, and should
be correlated with the Hungarites beds of Djulfa in Armenia and the
Upper Productus limestone of India; but this is purely stratigraphic, the
known fauna of the Upper Permian of Texas being too scanty to warrant
paleontologic correlation.

\(^a\) Bull. U. S. Geol. Survey No. 77, 1891.
Stratigraphy of American Carboniferous

Correlation Table of the Carboniferous

<table>
<thead>
<tr>
<th>Series</th>
<th>Stage</th>
<th>Mississippi Valley</th>
<th>Texas</th>
<th>Pacific Coast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permian</td>
<td>Wichita</td>
<td></td>
<td>Double Mountain</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wichita and Albany formations of</td>
<td>McCloud shales</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wichita, Baylor, and Archer counties</td>
<td></td>
</tr>
<tr>
<td>Coal Measures or Pennsylvanian</td>
<td>Arkansasian, Des Moines</td>
<td>Middle Coal Measures</td>
<td>Cisco formation of northern Texas.</td>
<td>Zone of Schizomerus (Economus).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower Coal Measures</td>
<td>Canyon formation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Strawn formation</td>
<td>McCloud limestone of northern California.</td>
</tr>
<tr>
<td>Lower Carboniferous or Mississippian</td>
<td>St. Louis-Osceola</td>
<td>Upper Coal Measures</td>
<td>Bend formation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wanting</td>
<td>Baird shales of northern California.</td>
</tr>
</tbody>
</table>

MOR XLII—02—2
Carboniferous Ammonoids of America

Correlation Table of the Carboniferous—Continued.

<table>
<thead>
<tr>
<th>Western Europe</th>
<th>Russia</th>
<th>Asia</th>
<th>Inter-regional Cephalopod Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zechstein</td>
<td>Kostroma</td>
<td>Hungarites beds of Djufia in Armenia, Upper Productus limestone.</td>
<td></td>
</tr>
<tr>
<td>Permian</td>
<td>Permian</td>
<td>Middle Productus limestone of Salt Range.</td>
<td></td>
</tr>
<tr>
<td>Rothliegendes</td>
<td>Artinsk</td>
<td>Lower Productus limestone of Salt Range.</td>
<td></td>
</tr>
<tr>
<td>Upper Coal Measures</td>
<td>Upper Carboniferous limestone of the Urals</td>
<td>Lo-Ping marine beds in Upper Coal Measures of China.</td>
<td></td>
</tr>
<tr>
<td>Stephanian</td>
<td>Cratian, CII</td>
<td>Zone of Cimicopinae.</td>
<td></td>
</tr>
<tr>
<td>Coal Measures of Belgium, Germany, and England</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Coal Measures</td>
<td>Beds of Chockier in Belgium.</td>
<td>Middle Carboniferous limestone of Moscow.</td>
<td></td>
</tr>
<tr>
<td>Westphalian</td>
<td>Moscovian, CII</td>
<td>Zone of Spirifer moscoviensis.</td>
<td></td>
</tr>
<tr>
<td>Millstone grit</td>
<td>Calca formation of Nestau and Hartz</td>
<td>Posidononema becheri beds of the Altai Mountains.</td>
<td></td>
</tr>
<tr>
<td>Westphalian</td>
<td>Limestones of Visé in Belgium; Rodland in Yorkshire; and the Pyrenees.</td>
<td>Productus longispinus beds of the Altai Mountains.</td>
<td></td>
</tr>
<tr>
<td>Dinantian</td>
<td>Visé formation</td>
<td>Productus semirostratus beds of Djufia in Armenia.</td>
<td></td>
</tr>
<tr>
<td>Mountain limestone</td>
<td>Coln formation of Nestau and Hartz</td>
<td>Productus giganteus beds of Asia Minor, central and eastern China.</td>
<td></td>
</tr>
<tr>
<td>Tournaisian</td>
<td>Beds of Tournai and Erdbach</td>
<td>Zone of Spirifer tornacensis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Productus giganteus and Spirifer borealis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acanthaster rotundus.</td>
<td></td>
</tr>
</tbody>
</table>
CLASSIFICATION OF PALEOZOIC AMMONOIDS.

Formerly all Paleozoic ammonoids were classified as Goniatites, with the exception of Clymenia, which was at first supposed to be a nautiloid. As more forms became known, the unwieldiness of the genus Goniatites was recognized by Beyrich, who subdivided it as follows: 1, Nautilini [Anarcestes and Mimoceras]; 2, Simplices [Tornoceras, Aganides, and Prionoceras]; 3, Aequales [Sporadoceras and Prolecanites]; 4, Irregulares [Beloceras]; 5, Primordiales [Gephyroceras]; 6, Carbonarii [Glyphioceras, Goniatites s. str., and Gastrioceras].

Afterwards another classification was attempted by G. and F. Sandberger, who established the following subdivisions: 1, Linguati [Sandbergeroceras]; 2, Lanceolati [=Aequales p. p. Beyrich]; 3, Genusfracti [=Carbonarii Beyrich]; 4, Serrati [=Irregulares Beyrich]; 5, Crenati [=Primordiales Beyrich]; 6, Acutolaterales [=Mammeoceras]; 7, Magnusellares [=Simplices Beyrich]; 8, Nautilini [=Nautilini Beyrich].

The divisions of Beyrich and those of the Sandbergers were not intended to represent genera, and they mostly contain heterogeneous elements. At that time even the old genus Ammonites, comprising several times as many species as Goniatites and species much more various in form, was still considered a unit.

Goniatites was supposed to differ fundamentally from Ammonites, although it was known to L. von Buch and Quenstedt that the ammonites in their youth went through a goniatite stage of growth; but since these forms were all supposed to be special creations, this phenomenon was not connected with the idea of evolution, and had no effect on classification.

The first attempt to distinguish genera among the goniatites was made by Dr. E. von Mojsisovics in 1882, who named Anarcestes, Pinacites, Pronorites, Prolecanites, and Pericyclus, bringing them into rather fanciful relationships to his genera of Triassic ammonites.

The first systematic attempt to group all goniatites in families and genera was by Hyatt in his Genera of Fossil Cephalopods, where they were classified as follows: "Family 1, Nautilinidae, including Mimoceras Hyatt,

bVerstein. Rheinischen Schichtensystems in Nassau.
cCephalop. Mediterranen Triasprovinz.
Anarcestes Mojsisovics, Agoniatites Meek, Pinacites Mojsisovics, Celeroceras Hyatt; family 2, Primordialidae, including Gephyroceras Hyatt, Manticoceras Hyatt; family 3, Magnosellaridae, including Paradoxoceras Hyatt, Tornoceras Hyatt, Maneceras Hyatt, Sporadoceras Hyatt; family 4, Glyphioceratidae, including Brancoceras [Ayanides] Hyatt, Maenustoceras Hyatt, Gastriloceras Hyatt, Paralegoceras Hyatt, Prionoceras Hyatt, Glyphioceras Hyatt [with Goniatites de Haan], Dimorphoceras Hyatt, Pericyclus Mojsisovics, Homoceras Hyatt [no longer recognized], Nomismoceras Hyatt [now grouped with the Gephyroceraidae].

Medlicottia Waagen, Sageceras Mojsisovics, and Lobites Mojsisovics were also included by Hyatt in the Prolecanitidae, although only Medlicottia seems to show any relationship to Prolecanites, and that only remotely.

Hyatt's families do not represent genetic series, but are polyphyletic groups of morphological equivalents— independent parallel developments from kindred stocks.

Before this publication of Hyatt, genera of Paleozoic ammonoids had already been recognized by Waagena in the Permian of India and Russia as follows: Xenodiscus Waagen, Medlicottia Waagen (as subgenus of Sageceras Mojsisovics), Cyclolobus Waagen. These were classed with the ammonites on account of their resemblance to Triassic genera.

Gemmellaro'sb monograph on the Permian cephalopod fauna of Sicily revealed hitherto unsuspected riches in Paleozoic ammonites of the families Glyphioceratidae, Arcestidae, Pinacoceratidae, Noritidae, and Tropitidae.

A somewhat similar fauna was described by Dr. C. A. Whitec from the Permian of Texas, with Paralegoceras, Popanoceras, Waagenoceras, and Medlicottia.

The classic Permian fauna of the Ural Mountains was redescribed and revised by Karpinsky,d who showed the gradual transition from the Carboniferous goniatites into the Permian ammonites in the Glyphioceratidae, Arcestidae, and Prolecanitidae.

a Pal. Indica, Ser. XIII, Salt Range Fossils, Vol. I.
b Fauna calc. Fusulina.
c Bull. U. S. Geol. Survey No. 77.
d Die Ammoniten der Artinsk-Stufe.
Quite recently G. von Arthaber—a has redescribed the Permian fauna of Djulfa in Armenia, making known the presence in the same beds of Productus, Gastrioceras, Otoceras, and Hungarites; the two latter ammonite genera are known elsewhere only in the Trias, and the beds containing them are considered as uppermost Permian, later even than the Upper Productus limestone of the Salt Range.

When these new discoveries began to be known, it became evident that a new classification of the Paleozoic ammonoids was necessary, since there was no place in the old scheme for the new forms. The first attempt to give a phylogenetic classification of ammonoids, showing the relationship of the goniatites and the ammonites was made by Steinmann,\(^b\) but this was largely speculative, not based on the ontogeny of any species, and hence fails to express the true relationships of the groups.

The most satisfactory attempt at a phylogenetic classification of the Paleozoic ammonoids is that of E. Hang,\(^c\) in which all known genera are grouped in five phyla, or superfamilies: (I) Anarcestidae, including Anarcestes, Paradoxocras, Pronoceras, Prolobites, Mueneceras, Sporadoceras, Dimoceras, Pharciceras, ? Sandbergeroceras, ? Trienoceras; (II) Glyphioceratidae, including Pericyclus, Muensteroceras, Glyphioceras, Goniatites s. str., Gastrioceras, Paralegoceras, Agatoceras, Adrianites, Stachoceras; (III) Agoniatitidae, including Gibroceras = [Mimoceras], Agoniatites, Tornoceras, Pinacites, Aganides = [Branoceras Hyatt], ? Pronannites, Dimophoceras, Thalassoceras, Papanoceras; (IV) Gephyroceratidae, including Gephyroceras, Timanites, Nomismoceras, Beloceras; (V) Ibergiceratidae = [Prolecanitidae, in part of Hyatt], including Ibergiceras, Paraprolecanites, Pronorites, Parapronorites, Propinacoceras, Medlicottia, Daraelites, Prolecanites.

On Table II, page 113, of Hang's work, is an attempt to show graphically the relations of the Paleozoic ammonoids to each other and to their successors of the Mesozoic. This classification is a distinct improvement over that of Steinmann, but also makes the mistake of grouping together heterogeneous elements and separating forms that are manifestly of near kinship. It also seems to the writer that there are too

\(^b\) Elemente der Paläont.

\(^c\) Études sur les Goniatites.
few phyla recognized. Since most of the ammonoid genera of the Devonian and Carboniferous were progressive, and probably gave rise to descendants in the Permian and Mesozoic, there ought to be nearly as many phyla, or genetic series, as there are primitive genera. But since some of these are nearer of kin than others, for the sake of convenience we group them together, in spite of the fact that this does not express the true filiation of the genera. Thus, even at the best, many of the so-called families will not be a true genetic series, but a group of nearly related morphological equivalents. It is doubtful whether the ideal of strictly monophyletic families and genera can ever be realized, even if the geologic record should turn out to be less broken than we now suppose it to be. Of the great majority of Paleozoic ammonoids we do not now know, and probably shall never know, the ontogeny, and until we are able to compare in every case the individual ontogeny with the supposed genetic succession as preserved in the rocks we can never hope to establish a classification that will not be overthrown by each discovery of new faunas.

One great difficulty in classification is that we do not yet know what characters are of fundamental importance in taxonomy. One systematist selects the length of the body chamber as the criterion, another the septa, another the sculpture. A rigid adherence to any one of these systems leads to absurdities, for it becomes clear that any one of these characters may appear at different times in different stocks; and a dependence on any one character would cause the grouping together of forms that have no real kinship. The only safe way is to take into consideration all these characters, where it is possible, and to compare in every case the individual ontogeny with the biologic sequence as preserved in the successive geologic formations. The writer has endeavored to do this in the classification adopted in this work.

TABLE OF PALEOZOIC AMMONOID GENERA.

For convenience of reference there is given below a table showing the genera and families now known from the Paleozoic, and their geologic range. This is based on the works of Hyatt, Gemmellaro, Karpinsky, Frech, Waagen, von Mojsisovics, von Arthaber, Haug, and Diener, and on the writer's own studies in the ammonoids of the Carboniferous and Lower Trias. This classification is only tentative; it represents merely the present state of knowledge, or rather of opinion, concerning the deriv-
TABLE OF PALEOZOIC AMMONOIDS.

Table of Paleozoic ammonoid genera.

<table>
<thead>
<tr>
<th>Family</th>
<th>Devonian</th>
<th>Lower Carboniferous</th>
<th>Coal Measures</th>
<th>Permian</th>
<th>Trias</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Family Bactritidae:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bactrites Sandberger</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Family Clymenidae:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clymenia Goebeli</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Family Anarcestidae:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anarcestes Mojsisovics</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mimoceras Hyatt</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paradoceras Hyatt</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probolites Karpinsky</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menoceras Hyatt</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sporadoceras Hyatt</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimeroceras Hyatt</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Family Agoniatitidae:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agoniatites Week</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aphyllites Mojsisovics</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tornoceras Hyatt</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinacites Mojsisovics</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Family Gephyroceratidae:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gephyroceras Hyatt</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manticoeras Hyatt</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timanites Mojsisovics</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nomismoceras Hyatt</td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
<td>?</td>
</tr>
<tr>
<td>Pseudonomismoceras Frech</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Family Lecanitidae:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xenaspis Waagen</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xenodiscus Waagen</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paralecanites Diener</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Lecanites Mojsisovics</td>
<td></td>
<td>(7)</td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Superfamily PROLECANITID.E—Continued.</td>
<td>Devonian</td>
<td>Lower Carboniferous</td>
<td>Lower Meas.</td>
<td>Permian</td>
<td>Trias</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------</td>
<td>---------------------</td>
<td>------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>7. Family Beloceratid.e:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probeloceras Clarke</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beloceras Hyatt</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prodromites Smith and Weller</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Family Pronoritid.e:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pronorites Mojsisovics</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Paraprolocanites Karpsinsky</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sicamites Gemmellaro</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propinacoceras Gemmellaro</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medlicottia Waagen</td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Family Noritid.e:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daradites Gemmellaro</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schuchertites Smith</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Family Prolocanitid.e:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prolocanites Mojsisovics</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>? Paraceltites Gemmellaro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Sandbergeroceras Hyatt</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Trienoceras Hyatt</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Pseudarietites Frech</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>? Phenacoeceras Frech</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharciceras Hyatt</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Family Hungaritid.e:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungarites Mojsisovics</td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otoceras Griesbach</td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superfamily GLYPHIOCERATID.E—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Family Glyphioceratid e, str.:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prionoceras Hyatt</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Pericyclus Mojsisovics</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphioceras Hyatt</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Goniatites de Haan</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Gastrioceras Hyatt</td>
<td></td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Paralegoceras Hyatt</td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schistoceras Hyatt</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Family Aganidid.e:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aganides de Montfort</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muensteroceras Hyatt</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Pronannites Haug</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonioloboceras Hyatt</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimorphoceras Hyatt</td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of Palaeozoic ammonoid genera—Continued.

<table>
<thead>
<tr>
<th>Superfamily GLYPHIOCERATIDE—Continued.</th>
<th>Devonian</th>
<th>Lower Carboniferous</th>
<th>Coal Measures</th>
<th>Permian</th>
<th>Trias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thalassoceras Gemmellaro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Milleroeceras Hyatt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superfamily ARCESTIDAE—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Family Popanoceratida:</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Agathiceras Gemmellaro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adrianites Gemmellaro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Popanoceras Hyatt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stacheoceras Gemmellaro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Doryceras Gemmellaro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Clinolobus Gemmellaro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Family Cyclolobida:</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclobas Waagen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyattoceras Gemmellaro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shumardites Smith</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waagenoceras Gemmellaro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AMMONOIDS OF THE AMERICAN CARBONIFEROUS.

Genera represented.

The writer has made no distinction between goniatites and ammonites, because there is none that will hold. Certain families, or genetic series, contain some genera that, on account of simplicity of the septa, would be called goniatites, and others that might appropriately be termed ammonites. There are other forms that, while having simple or goniatitic septa, have forward-pointing siphonal collars and would thus fall under the definition of ammonites. The form of the aperture has been frequently used as a mark of distinction between these two groups, but this is so commonly unknown as to have little value in systematic work.

There are at present known in the American Carboniferous eleven families, twenty-four genera, and eighty-nine species of ammonoids, besides two apocryphal species (not ammonoids). Their stratigraphic occurrence is as follows:

Kinderhook: Prolocanites, Podoconites, Aganides, Prionoceras?, Macrostroceras, Gonioloboceras?, Perirhynchus, Agoniatites.

Osage: Aganides?, Macronoceras?
CARBONIFEROUS AMMONOIDS OF AMERICA.

St. Louis-Chester: Gonioboceras, Glyptioceras, Goniatites s. str., Gastroceras, Paralegooceras, Pronorites, Nomismoceras.

Lower Coal Measures: Glyptioceras, Gastroceras, Paralegooceras.
Middle Coal Measures: Papanoecerat, Neociooceras, Proceramites, Glyptioceras, Goniatites s. str., Gastroceras, Paralegooceras.

Upper Coal Measures: Milleroceras, Glyptioceras, Gastroceras, Schistoceras, Shumardites, Paralegooceras, Agatheceras, Papanoecerat, Schuchertites, Gonioboceras, Dimorphoceras.

Permian: Paralegooceras, Papanoecerat, Waagenoceras, Medlicottia.

The association and range of the genera of the Upper Coal Measures are approximately the same as in the Uralian of Europe, except that in Europe the true ammonites are not known below the Permian.

Papanoecerat, Shumardites, and Schuchertites would be classed by anyone among the ammonites, on account of their complex septa, while Schistoceras might justly be placed under the same group, on account of the large number of lobes and the forward-pointing siphonal collars.

While nearly all the characteristic European genera are present, some are extremely rare, represented by a single species, as Agathiceras, Dimorphoceras, Nomismoceras, and Periclyclus; others have a different range in America from that in Europe. Dimorphoceras appears first in Europe in the Visé horizon, but in America is unknown until the Upper Coal Measures, or Uralian. Papanoecerat is known in Europe only in the Permian, but in America it occurs in the Middle and Upper Coal Measures. Gastroceras and Paralegooceras do not appear in Europe before the middle of the Coal Measures, but in America they are known in the St. Louis-Chester. Prodromites, Gonioboceras, Schistoceras, Shumardites, and Schuchertites are not yet known in the European region.

These differences of range and association give us hints as to the region where some of these forms originated, but the information is too indefinite to allow any positive statements as to the faunal geography of that time. This much is certain: At least periodically there was easy intermigration between the American and the European waters, for the community of genera, and even of species, is too great to be explained by any other hypothesis.
Table of occurrence of ammonoid genera in the American Carboniferous.

(Those genera marked ××× are common; those marked ×× are rare; those marked × are very rare.)

<table>
<thead>
<tr>
<th>Lower Carboniferous</th>
<th>Coal Measures or Pennsylvanian</th>
<th>Permian.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone of Amnides adustus</td>
<td>Zone of Gephyrocera diadema</td>
<td>Zone of Gephyrocera lateri</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Kinderhook</th>
<th>Burlington</th>
<th>Keokuk</th>
<th>St. Louis</th>
<th>Chester</th>
<th>Des Moines</th>
<th>Missouri</th>
<th>Wichita</th>
</tr>
</thead>
</table>

Bacteritidè:
- Bactrites

Agonicatidè:
- Agoniatsites

Gephyrocerateidè:
- Nomosiroceras

Superfamily PROLECANITIDÈ.

Beloceratidè:
- Prolocerites

Proceratidè:
- Procerites
- Medlicottia

Nothidè:
- Schuchertites

Prolecanitidè:
- Prolecanites

Superfamily GLYPHIROCERATIDÈ.

Gephyrocereiidès s. str.:
- Priomoceras
- Pericyclus
- Glyphioceras
- Goniatsites s. str.
- Gastriceras
- Paralogoceras
- Schistoceras

Aganidè:
- Aganides
- Menisternoceras
- Goniodoceras
- Dimorphoceras
- ? Milleroceras
CARBONIFEROUS AMMONOIDS OF AMERICA.

Table of occurrence of ammonoid genera in the American Carboniferous—Continued.

<table>
<thead>
<tr>
<th></th>
<th>Lower Carboniferous.</th>
<th>Coal Measures or Pennsylvanian</th>
<th>Permian.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superfamily ARCESTID.E.</td>
<td></td>
<td>Zone of Agnatiidae rotatoriae.</td>
<td>Zone of Goniatites striatana.</td>
</tr>
<tr>
<td>Ponanoceratidae:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agathiceratites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Popanoceras</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclolobidae:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shumardites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waagenoceras</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family indet.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neoicoiceratites</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE OF SPECIES DESCRIBED.

<p>| Family Bacotiidae | 31 |
| Bactrites | 31 |
| carbonarius Smith, sp. nov | 31 |
| Family Agoniatidae | 32 |
| Agonitites | 32 |
| opinus White and Whitfield | 32 |
| Family Gephyroceraidae | 33 |
| Nomismoceras | 33 |
| monacense Worthen | 34 |
| Superfamily Prolecantidae | 34 |
| Family Belloceratida | 34 |
| Prodromites | 34 |
| gorbyi Miller | 37 |
| ornatus Smith, sp. nov | 39 |
| prematurus Smith and Weller | 40 |
| Family Pronoritida | 41 |
| Pronorites | 41 |
| cyclolobus Phillips var. arkansasensis | 43 |
| siebenthali Smith, sp. nov | 47 |
| Medlicottia | 47 |
| copei White | 48 |
| Family Notitidae | 49 |
| Schucherti gen. nov | 49 |
| grahami Smith, sp. nov | 50 |
| Family Prolecantidae s. str. | 51 |
| Prolecanites | 51 |
| ? compactus Meek and Worthen | 52 |
| greenii Miller | 52 |
| hurleyi Smith, sp. nov | 53 |</p>
<table>
<thead>
<tr>
<th>Superfamily</th>
<th>Prolecanitidae</th>
<th>Continued.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family</td>
<td>Prolecanitidae s. str.</td>
<td>Continued.</td>
<td></td>
</tr>
<tr>
<td>Prolecanites</td>
<td>houghtoni</td>
<td>Winchell</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>? louisianensis</td>
<td>Rowley</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>lyoni</td>
<td>Meek and Worthen</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>marshallensis</td>
<td>Winchell</td>
<td>55</td>
</tr>
<tr>
<td>Superfamily</td>
<td>Glyphioceratidae</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>Family</td>
<td>Glyphioceratidae s. str.</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>Prioceras</td>
<td></td>
<td></td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>andrewsi</td>
<td>Winchell</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>? brownense</td>
<td>Miller</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>? chioense</td>
<td>Winchell</td>
<td>59</td>
</tr>
<tr>
<td>Pericyclus</td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>blairi</td>
<td>Miller and Gurley</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>? princeps de Koninck</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>Glyphioceras</td>
<td></td>
<td></td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>calyx</td>
<td>Phillips</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>diadema</td>
<td>Goldfuss</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>? hatawayanum</td>
<td>McChesney</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>leviculum</td>
<td>Miller and Faber</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>pygmeum</td>
<td>Winchell</td>
<td>65</td>
</tr>
<tr>
<td>Goniatites</td>
<td></td>
<td></td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>choctawensis</td>
<td>Shumard</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>cranistria</td>
<td>Phillips</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>greenacrensis</td>
<td>Miller and Gurley</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>kentuckiensis</td>
<td>Miller</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>lunatus</td>
<td>Miller and Gurley</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>newsoni Smith, sp. nov.</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>sphencicis</td>
<td>Martin</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>striatus</td>
<td>Sowerby</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>subcircularis</td>
<td>Miller</td>
<td>81</td>
</tr>
<tr>
<td>Gastriceras</td>
<td></td>
<td></td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>branmeri</td>
<td>Smith</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>? carbonarium von Buch</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>compressum</td>
<td>Hyatt</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>entogonum</td>
<td>Gabb</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>excelsum</td>
<td>Meek</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>globulosum</td>
<td>Meek and Worthen</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>illinoise</td>
<td>Miller and Gurley</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>kansasense</td>
<td>Miller and Gurley</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>kingi Hall and Whitfield</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>listeri</td>
<td>Martin</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>montgomeryense</td>
<td>Miller and Gurley</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>nolinense</td>
<td>Cox</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>occidentale</td>
<td>Miller and Faber</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>planorbiiforme</td>
<td>Shumard</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>subcaurum</td>
<td>Miller and Gurley</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>welleri Smith, sp. nov.</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>Paralegoceras</td>
<td></td>
<td></td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>baylincense</td>
<td>White</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>iowense</td>
<td>Meek and Worthen</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>newsoni Smith, sp. nov.</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>texanum</td>
<td>Shumard</td>
<td>104</td>
</tr>
<tr>
<td>Schistoceras</td>
<td></td>
<td></td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>fultonense</td>
<td>Miller and Gurley</td>
<td>106</td>
</tr>
</tbody>
</table>
Superfamily Glyphioceratidae—Continued.

Family Glyphioceratidae, str.—Continued.

Schistoceras hildrethi Morton... 107
hyatti Smith, sp. nov... 108
missouriense Miller and Faber... 111

Family Aganididae.. 112

Aganides.. 112
rotatorius de Konineck... 112
discoidalis Smith, sp. nov.. 114
jessie Miller and Gurley... 115
propinquus Winchell... 115
reningeri Winchell... 116
? sciotoensis Miller and Faber.. 116
shumardianus Winchell... 117

Muensteroceras.. 117
? holmesi Swallow... 118
? indiannense Miller... 118
? morganense Swallow.. 119
ossegense Swallow... 119
oweni Hall.. 120
parallelum Hall.. 121

Gonioloboceras.. 123
allei Winchell... 123
goniolobum Meek... 123
linatum Miller and Faber... 124
welleri Smith, sp. nov.. 125

Dimorphoceras... 126
texanus Smith, sp. nov.. 126
Milleroceras.. 127
parrishi Miller and Gurley... 127

Superfamily Arcticidae.. 128

Family Popanoicereidae.. 130

Agathiceras.. 130
ciscoense Smith, sp. nov.. 131

Popanoceras... 132
gandi Smith, sp. nov... 132
parkeri Heilprin... 133
walcotti White... 134

Family Cyclooceridae... 134

Shumardites... 134
simoni Smith, sp. nov... 135

Waagenoceras... 138
cummins White... 139
hilli Smith, sp. nov... 140

Species not generally identified.. 141

Goniatites ? columbiculus Morton... 141
? minimus Shumard.. 141
? parvus Shumard... 142
? politus Shumard... 142

Species named but not described.. 142

Goniatites ? sulciferus Winchell.. 142

Species not ammonoids.. 142

"Ammonites" bellicosus Morton.. 142

Systematic position doubtful.. 143

Neoicoceras elkhornense Miller and Gurley.................................. 143
DESCRIPTIONS OF THE SPECIES.

Family BACTRITIDÆ.

Genus Bactrites Sahdberger.

Shell straight or slightly curved, gently tapering, cross section circular or elliptical. Surface smooth except for the cross striae of growth. Siphuncle marginal, with long backward-pointing extensions of the septum, as in Spirula. Septa simple, running nearly straight around the shell, but with a funnel-shaped siphonal lobe.

Bactrites was formerly regarded as a nautiloid, but its siphonal lobe and the calcareous protoconch that has been found on a few specimens cause it to be classed usually under the ammonoids. The genus has been usually considered as typical of the Devonian, and the species described below is the only authentic species known to occur in Carboniferous strata.

Bactrites carbonarius Smith, sp. nov.

Pl. VI, figs. 9-11.

Shell straight, gently tapering, slender, angle of the increase 5° 30'. Cross section of whorl circular. Chambers convex backward, deep, septa close together. The septum runs nearly straight around the shell, but has a slender tongue-shaped siphonal lobe, and short backward-pointing siphonal collar. Siphuncle slender, with long backward extension of the septum, as in Spirula; when this extension reaches the extremity of the siphonal lobe it swells out into a knob-like expansion, supposed to represent a periodic repetition of the siphonal cecum. From this contact with the septum a short siphonal collar extends backward into the next chamber. This septum is much more specialized than that of any other species of Bactrites yet described, but this is not remarkable if we consider the fact that the genus has not before been found above Devonian beds. Surface smooth except for fine sinuous imbricating cross striae of growth.

Bactrites was probably the ancestor of the entire ammonoid stock, and thus in it we have a survival of a primitive type occurring along with the
more specialized descendants of that type. This occurrence, however, is of even greater interest, not as an anachronism, but rather as a forerunner of other forms. Morphologists look to a straight orthoceran ammonoid as the ancestor of the Belemnoidea, but the gap from the Devonian to the Trias has been a rather severe tax on the faith of the geologist. Here, then, we have this gap at least partly filled out by the finding of *Bactrites* near the top of the Lower Carboniferous.

Occurrence.—St. Louis-Chester stage, so-called "Fayetteville shale" of the Arkansas geological survey, on farm of O. P. Goodwin, near Moorefield, Ark. The type was collected by the writer, and is deposited in his paleontologic collection at Leland Stanford Junior University, California.

Family *AGONIATITID.E.*

Genus *Agoniatites* Meek.

The name *Agoniatites* was proposed by F. B. Meek for compressed shells with flattened sides, narrow abdomens, narrow umbilici, with high and narrow aperture; septa consisting of a short abdominal lobe, and a lateral lobe consisting merely of a broad curve. The type chosen was *Goniatis* *expansus* Vanuxem.

Agoniatites opimus White and Whitfield.

Pl. VII.

1900. *Agoniatites opimus*, S. Weller, Kinderhook Faunal Studies, II, p. 121, Pl. VII, fig. 8; Pl. VIII, fig. 1; Pl. IX, fig. 1.

The following description is copied from Dr. Weller's paper:

Shell large, discoid, gently convex on the sides, rather sharply rounded on the periphery. Number of volutions not known, the inner ones embraced by the next outer one to a depth of one-half the diameter of the latter; the umbilicus rather small, but somewhat variable in size, being relatively larger in the larger individuals. Its sides rounded. Aperture compressed crescentic in outline, the proportion of height to width about as 7 to 5, the ventral margin sinuate as indicated by the lines of growth. The size of the living chamber not known. Septa deeply concave, rather distant, being about 20 mm. apart in the outer volution of a large individual:

the sutures forming a low saddle upon the umbilical angle, then gently curving backward and forming on each lateral face a single broad lobe which occupies the entire width of the volutions; the direction of the suture upon the periphery can not be certainly determined, but there seems to be a low saddle on either side, with a shallow ventral lobe between. Position of the siphuncle unknown. Surface marked by faint lines of growth which are sinuate on the periphery of the shell.

Remarks.—In the original description of Goniatites opimus, specimens of two entirely different species were apparently used, the general form of the shell being described from one specimen and the suture from another. The specimen here illustrated on Pl. VII, fig. 8 [in Weller's Kinderhook Faunal Studies, II, The Fauna of the Chonopectus Sandstone at Burlington, Iowa], is the type of the species in the University of Michigan collection, and corresponds with original description of the general form and proportions of the shell. This specimen, however, does not preserve the suture, and the original from which the suture was described has not been seen. The latter specimen was probably a fragmentary one, not preserving the form of the shell, which was believed to belong to the same species as the type which has been preserved. In the collection received from Prof. Calvin there is a goniatite much larger than the type of G. opimus, but agreeing closely with it in its general form and proportions in all respects save in its relatively larger umbilicus. This specimen is illustrated on Pls. VIII and IX [in Weller's paper cited above], and it is believed to be an individual of the same species as the type of G. opimus; but, unlike the type specimen, several of the sutures are fairly well preserved, and are entirely different from the sutures of G. opimus as indicated in the original description. It is therefore probable that the suture originally described as that of G. opimus is really that of some shell which is not only specifically but generically distinct from G. opimus. The true suture of the species is in all respects that of the genus Agoniatices, and therefore the species is placed in that genus. Heretofore this genus has been recognized only in the Devonian, and in America, at least, at no higher horizon than the Middle Devonian.

Occurrence.—Lower Carboniferous, Kinderhook stage, Chonopectus sandstone, Burlington, Iowa.

Family Gephyrocercatidæ.

Genus Nomismoceras Hyatt.

This genus was established by Hyatt, with Goniatites spirorbis Phillips as the type, to include evolute shells with wide umbilicus and glypioceran septa; it was regarded as belonging to the Glyphioceratidæ, section Dimorphocereæ. Haug classes Nomismoceras under the Gephyrocercidæ, and regards it as the radical of the Meekoceratidæ of the Trias, the series being Nomismoceras, Paralecanites, Lecanites, Meekoceras.

*b Études sur les Goniatites, p. 46.
It is possible that *Nomismoceras* may be the connecting link between this family and *Prolecanites*, although it may be a degenerate form of the Glyphioceratidae, to which opinion E. Holzapfel seems to incline.

Nomismoceras † monroense Worthen.

Pl. V, fig. 11.

Shell discoidal, evolute, compressed, sides slightly rounded, abdomen narrow and sharply rounded. Height of whorl a little greater than width; umbilicus comparatively wide, being about once and a half as wide as the height of the whorl. Umbilical shoulders rather angular and abrupt. Surface of shell smooth, septa consisting of a pair of short rounded lobes on each side, with obtuse saddles.

The generic reference is very doubtful; the species certainly does not agree with the type of the genus, but probably is as nearly related to it as are several other species that are generally classed under *Nomismoceras*.

Occurrence.—Lower Carboniferous, St. Louis stage, Monroe, Illinois. Deposited in the Illinois State Museum.

Superfamily PROLECANITIDÆ.

Family BELOCERATIDÆ.

Genus Prodromites Smith and Weller.

The type of this genus is *P. (Goniatites) gorbyi* Miller. The type species was originally described as "*Goniatites,*" but a most liberal interpretation of that group could not include this form, which was assigned to that division simply because of its occurrence in Carboniferous rocks.

The genus *Prodromites* is characterized by its laterally compressed, discoidal, evolute deeply embracing whorls, narrow umbilicus, high, hollow abdominal keel, and complex ceratitic septa. Where the keel is broken off,
as is usually the case, the abdomen is flattened and angular. The surface,
as far as known, is smooth, destitute of ribs, constrictions, or other ornamenta-
tion. The septation is the most distinctive feature of this genus, on
account of the large number of serrated lobes, and extensive auxiliary series
of lobes and saddles. The ventral lobe is rather long and undivided, the
saddles all rounded and entire; the first four or five lateral lobes are serrated,
and in addition to these there is a series of six or more pointed and more or
less irregular auxiliary lobes.

The only Paleozoic genus to which *Prodromites* may be likened is
Beloceras Hyatt, which it resembles only in its compressed involute form
and in the multiplication of the elements of the septa. The resemblance is
not great, but the agreement is fundamental, and the two genera may safely
be placed in the same family or phylum. A much greater resemblance and
probable kinship connects this form with *Hedenstromia* Waagen, of the
Lower Trias of the Oriental region. The best known species of that genus
is *H. mojisovici* Diener. In *Hedenstromia*, as defined by Waagen, the
ventral lobe is divided, the external saddle is divided by adventitious lobes;
the first four lateral lobes are serrated, and there is a series of about six
pointed auxiliary lobes. The form is flattened, involute, with narrow and
angular abdomen. No keel is known, and the shell is smooth. In
Prodromites, on the other hand, the ventral lobe is undivided, and the
external saddle is entire and rounded; but in the serration of the first four
or five lateral lobes, and in the auxiliary series it is almost identical with
Hedenstromia, as also in the form, with the exception of the keel, which
may not have been preserved in the few specimens known. There can be
no doubt that the two genera belong to the same phylum and even family,
in spite of the long time that intervened between the Kinderhook formation
of the Lower Carboniferous and the Lower Trias. *Hedenstromia* (Pl. XXV,
fig. 5), according to Waagen, belongs to the family Pinacoceratidae, sub-
family Hedenstromina, which also contains *Clypites* Waagen, and *Carites*
Mojsisovics of the Trias. The family Pinacoceratidae in the broader sense,
as defined by Waagen, contains all forms with compressed involute whorls,
an adventitious series of lobes, many lateral lobes and saddles, and an

Pl. XXV, fig. 1a–e.*

Hid.
auxiliary series of lobes outside of the umbilicus. In this family Waagen
groups the following subfamilies: 1, Medlicottinae; 2, Beloceratinae; 3,
Beneckeinae; 4, Hedenstrominae; all of which have representatives in
American Paleozoic or Triassic strata.

It is not likely that *Prodromites* is a descendant of *Beloceras*, since the
septation is quite different in the two genera; and unless *Hedenstromia*
should be found to have a keel, it is not probable that it has descended
from *Prodromites*. *Beloceras* is commonly placed in the family Prolecanc-
tidae, although it antedates any typical species of *Prolecanites*. On the
other hand, *Medlicottia*, which appears to be closely related to *Prodromites*,
seems certainly to have been a descendant of the typical Prolecantidae.
No solution of these questions is possible until the ontogeny of several of
these genera is known, which is prevented, at present, by a scarcity of
specimens. Until other evidence is forthcoming *Prodromites* is placed
under the Beloceratidae, as an ancestral group of the family Pinaeoceratidae.

The genus is not founded solely on Miller's figure, which is not accurate,
nor even on his type specimens, but also on three other specimens of
this species and one of another species, bringing out certain characters that
did not show on Miller's type. The writer has had at his disposal for study
four specimens of *Prodromites gorbyi* Miller, and one of *P. prenaturus*
Smith and Weller, all of which, except one, belong to the paleontologic
collection of the Walker Museum, University of Chicago, to the authorities
of which the writer's thanks are due for the use of the specimens. The
first specimen, No. 6208, is Miller's type of *Goniatis gorbyi*, and came
from the Chouteau limestone, Pin Hook Bridge, Pettis County, Mo. A
second specimen, No. 6474, was obtained from Prof. G. C. Broadhead; it is
better preserved than the type, but is in the same sort of limestone, and
while it is merely labeled "Chouteau limestone, Pettis County, Mo.," it
probably came from the same locality as the type. A third specimen, No.
6722, is recorded merely from the Kinderhook stage of Burlington, Iowa.
The material in which it is preserved is a buff or yellowish, rather finely
crystalline limestone, the position of which in the Kinderhook section at
Burlington is probably near the top, between the oolitic limestone and the
buff magnesian bed, which lies immediately below the Burlington limestone.

a The numbers refer to the Walker Museum collection.
of Osage age. This horizon may then be correlated with the Chouteau limestone of central Missouri.

A fourth specimen of *Prodromites gorbyi* was studied in the collection of Fred. Braun, of Brooklyn, N. Y.; it came from the goniatite beds of the Kinderhook of Rockford, Ind., associated with *Prolecanites lyoni* Meek and Worthen, *Aganides rotatorius* de Koninck, *Muensteroceras oweni* Hall, *M. parallelo* Hall; thus it is certainly in the zone of *Aganides rotatorius* of the Tournaisian horizon of the Lower Carboniferous (Mississippian or Dinantian).

A fifth specimen of the genus, No. 6223, belongs to a new species, *(P. prematurus* Smith and Weller); it came from the goniatite beds of the Kinderhook of Rockford, Ind.

Occurrence.—Since this genus occurs in the same horizon, in rocks of different lithologic character, and in three localities, separated by hundreds of miles, it may be considered as characteristic of the Kinderhook or Chouteau horizon of the Lower Carboniferous, equivalent to the lower part of the Tournaisian division of the European Dinantian formation. At present, *Prodromites* is not known outside of America, and but three species are known, in the Mississippi Valley region, from the three localities mentioned.

Prodromites gorbyi Miller.

Pl. XXIII; Pl. XXV, figs. 1, 2.

1901. *Prodromites gorbyi*, Smith and Weller, Jour. Geol., Vol. IX, No. 3, p. 259; Pl. VI, fig. 1; Pl. VII, fig. 1; Pl. VIII, figs. 1 and 2.

Neither the description nor the figure of this type given by Miller is accurate, the drawings of the septa being much too generalized. The form is laterally compressed, involute, discoidal, with very narrow umbilicus. The abdomen is narrow and surmounted by a high hollow keel, which, however, is not usually preserved. Where the keel is broken away the abdomen is narrow, less than a millimeter wide, with angular edges. The sides are smooth, devoid of constrictions, ribs, or other ornamentation, so far as could be determined from the casts.

The septa are complex, ceratitic, with many lobes and saddles. The
ventral lobe is long and undivided. The external saddle is rounded, entire, and shorter than the laterals. The first lateral lobe is serrated, four-pointed; the second four-pointed; the third, three-pointed; the fourth, irregularly three-pointed; the fifth, irregularly bifid. With the sixth lateral lobe begins the auxiliary series of goniatitic lobes, which are of irregular size, and eight in number at maturity, growing smaller toward the umbilicus. These characters could not be made out distinctly on Miller's type, but the details were clearly seen on No. 6474, from the same locality. The differences between the two specimens might seem, at a casual glance, to be specific, but closer study shows them to be due to difference of preservation, and to different sizes at which the septa are seen. The type specimen shows the keel at only a few places on the periphery, and so indistinctly that Miller overlooked it, while No. 6474 shows the keel, 3 \(\frac{3}{4} \) mm. high, entirely around the periphery. On both specimens the body chamber is incomplete and occupies a little over a fourth of the last revolution. It is not known what was the shape of the aperture, how long the body chamber was when the keel began, nor what the internal lobes were like, since none of the specimens available sufficed to answer these questions.

A smaller specimen, No. 6222, from the Kinderhook beds, of Burlington, Iowa, showed much simpler septa and the narrow angular abdomen with the keel broken off. It is undoubtedly in the beginning of the mature stage of growth, and is of value in showing the shape of the cross section, since the sides were free from the matrix.

Occurrence.—At present there are known only five specimens of *Prodromites gorbyi*, all from the same horizon, Kinderhook or Chouteau stage zone of *Aganides rotatorius* of the Lower Carboniferous, equivalent to the Tournaisian horizon of the Dinantian formation of Europe, viz:

1. Miller's type, from the Chouteau limestone of Pin Hook Bridge, Pettis County, Mo. No. 6208, paleontologic collection, Walker Museum, University of Chicago (Gurley collection). This specimen is the type of the genus *Prodromites* Smith and Weller (Pl. XXIII, fig. 1).

Dimensions.

<table>
<thead>
<tr>
<th></th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>114</td>
</tr>
<tr>
<td>Height of last coil</td>
<td>64</td>
</tr>
<tr>
<td>Height of last coil from the preceding</td>
<td>35</td>
</tr>
<tr>
<td>Width of last coil</td>
<td>..</td>
</tr>
<tr>
<td>Involution</td>
<td>29</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>4</td>
</tr>
</tbody>
</table>
2. Specimen obtained from Prof. G. C. Broadhead, Chouteau limestone, Pettis County, Mo., probably from the same locality as the last, No. 6474, paleontologic collection, Walker Museum, University of Chicago (Pl. XXIII, fig. 2).

Dimensions.

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>117</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>68</td>
</tr>
<tr>
<td>Height of last whorl from the preceding</td>
<td>38</td>
</tr>
<tr>
<td>Involution</td>
<td>30</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>52</td>
</tr>
</tbody>
</table>

3. Specimen from the Kinderhook limestone of Burlington, Iowa, between the oolitic limestone and the buff magnesian bed that lies immediately below the Burlington beds of the Osage stage. No. 6222, paleontologic collection, Walker Museum, University of Chicago (Pl. XXV, figs. 1 and 2)

Dimensions.

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>75</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>42</td>
</tr>
<tr>
<td>Height of last whorl from the preceding</td>
<td>25</td>
</tr>
<tr>
<td>Width of last whorl</td>
<td>10</td>
</tr>
<tr>
<td>Involution</td>
<td>17</td>
</tr>
<tr>
<td>Width of umbilicus, about</td>
<td>4</td>
</tr>
</tbody>
</table>

4. Specimen from the goniatite beds of the Kinderhook of Rockford, Ind.; in the paleontologic collection of Fred. Braun, of Brooklyn, N. Y., where it was examined by the writer. Its dimensions are about the same as of the two specimens from Missouri.

5. A specimen from this species is said to be in the U. S. National Museum, but it has not been seen by the writer.

Prodromites ornatus Smith, sp. nov.

Plate XXV, figs. 6–8.

Form discoidal, involute, laterally compressed. Whorls deeply embracing, and deeply indented by the inner volutions. Cross section of the whorl high and narrow, with flattened sides and acute venter, surmounted by a sharp, narrow keel. The umbilicus is almost entirely closed, and without umbilical shoulders. The height of the whorl is somewhat more than one-half of the total diameter of the shell, and the breadth is one-fourth of the height: it is indented by the inner volutions to one-half of
its height. The surface of the cast is ornamented with sigmoidal ribs, which bend backward toward the venter. These ribs are fine and sinuous, showing with unusual distinctness on the cast. The outer shell is unknown, but they should be even more distinct on it.

Septa ceratitic, lanceolate. The ventral lobe seems to be undivided, the first lateral is indistinctly tripartite, the second lateral distinctly serrated, and the third is bifid; these are followed by a series of six unserrated auxiliary lobes, growing smaller and shorter toward the umbilicus.

From its small size, its shape, and the primitiveness of its septa, this specimen might be considered as the young of *Prodromites gorbyi*, but in all known specimens of that species the surface of the cast is perfectly smooth. It undoubtedly belongs to that genus, and is perhaps the young of some unknown form, but probably not that of *Prodromites gorbyi*, nor of *P. premar turus*; a name is therefore given to it by which the mature form may be known when it is discovered.

Only a single specimen is known, No. 7682, paleontologic collection, Walker Museum, University of Chicago. The writer's thanks are due Dr. Stuart Weller for the use of the type. Diameter of the type, 28 mm.

Occurrence.—Lower Carboniferous, Kinderhook stage, Chouteau limestone, Pettis County, Mo.

Prodromites premar turus Smith and Weller.

Pl. XXV, figs. 3 and 4.

Type of species is specimen No. 6223, paleontologic collection, Walker Museum, University of Chicago (Gurley collection). Form laterally compressed, discoidal, involute, deeply embracing, with narrow umbilicus, narrow, slightly flattened abdomen surmounted by a hollow keel 3 mm. high. Whorl indented by the preceding whorl to a little over one-third of its height. Surface smooth, so far as known.

The septa are complex, ceratitic, with rounded, entire saddles, serrated lateral lobes, and a series of auxiliaries above the umbilicus. The ventral lobe is narrow and undivided; the first lateral is longer and three-pointed: the second lateral, four-pointed; the third lateral, bifid; the fourth lateral, bifid: then begins a series of auxiliary lobes, undivided and pointed, seven in number.
The only species with which *Prodromites prematurus* might be compared is *P. gorbyi*, from the same horizon, but in *P. prematurus* the abdomen is slightly broader, the shell rather thicker, the septa rather more complex, and the umbilicus slightly wider than on *P. gorbyi* at the same diameter. In the figures and descriptions of the septa a difference between the two species may easily be seen.

Dimensions.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>62</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>34</td>
</tr>
<tr>
<td>Height of last whorl from the preceding</td>
<td>21</td>
</tr>
<tr>
<td>Width of last whorl</td>
<td>9.5</td>
</tr>
<tr>
<td>Involution</td>
<td>13</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>6.5</td>
</tr>
</tbody>
</table>

This specimen was septate throughout, and when complete must have been much larger.

Occurrence.—Only a single specimen is known, No. 6223 of the paleontologic collection, Walker Museum, University of Chicago, from the Lower Carboniferous, Kinderhook limestone, goniatite beds of Rockford, Ind., near the base of the Mississippian series.

Family PRONORITIDÆ.

As it is now generally admitted that *Pronorites* and its allies can not be classed under the family Prolecanitidæ in the strictest sense, some new designation for this group ought to be given. E. Hange* proposed the name Ibergiceratidæ for this phylum, but the genus on which the family was founded, *Ibergiceras*, has since been shown to be merely an immature form of *Pronorites cyclochlamys*. Since *Pronorites* is the principal genus of this group, and is the ancestor of a large number of genera that occur in the Permian and Trias, the writer proposes to call the family Pronoritidæ, including *Pronorites, Sicanites, Propinacoceras*, and *Medlicottia*. These all seem to have been derived from *Paraprolecanites*, which may then be considered as the family radicle. F. Frech* has used the term Pronoritinae for this group, regarding it as a subfamily.

Genus Pronorites Mojsisovics.

In the adult stage *Pronorites* is discoidal, has high, narrow whorl, with nearly parallel sides, is very involute, and has narrow umbilicus.

The siphonal lobe is three-pointed, the first lateral lobe divided into

*a Études sur les Goniatites, p. 50.
*b Die Dyas, p. 481.
two or three parts by secondary sinuses. In addition to these there are several auxiliary lateral lobes, three to six, all slightly pointed, while all the saddles are rounded. No constrictions or other surface ornamentations are known, except that on the adult body chamber faint ribs have been observed.

The first septum of Pronorites is latisellate, and the broad sinuses is soon divided by a siphonal lobe into two lateral sinuses (Pl. XII, fig. 1). This is the end of the embryonic stage, in which the shell is seen to belong to an ammonoid cephalopod, but the family is not yet indicated.

In the next stage the lateral sinuses are subdivided by broad, rounded lobes; the sutures then resemble those of Goniatites (Ihergiceras) tetragonas Roemer, and the shell is in the beginning of the larval or neptic stage; a little further on the sutures are like those of a Prolecanites (P. serpentinus Phillips), and the larval stage is approaching its end.

In the following or neanic stage the siphonal lobe becomes three-pointed, and the shell corresponds to Paraprolecanites Karpinsky, and its family affinities are beyond doubt (Pl. XIII, fig. 5).

With the adult or ephebic stage the first lateral lobe becomes divided into two or three parts (Pl. XIII, fig. 5c-f). With this stage the genus Pronorites stops; but Gemmellaro has described from the Permian of Sicily a further development of this series in the genus Parapronorites, in which the double lateral lobe and some of the simple ones become serrated.

Another line of development of Pronorites has been described by Gemmellaro as Sicanites, in which all the lateral lobes become double like the first one. The next higher stages are given by Medlicottia Waagen, in which the siphonal saddles become indented and ammonitic. Karpinsky\(^a\) shows that Medlicottia in its development goes through the Ihergiceras, Prolecanites, Paraprolecanites, Pronorites, Sicanites and Promedlicottia stages.

Pronorites is represented in America by two species, one in the upper part of the St. Louis-Chester stage, and one in the Middle Coal Measures, both in Arkansas. The finding of Pronorites in Arkansas is of great importance, since it is the ancestor of Medlicottia, which, though unknown in Arkansas, has been found at no great distance away in the Texas Permian. Pronorites, on the other hand, has not yet been found in Texas.

\(^a\) Holzapfel has recently shown in Die Cephalopoden des Domanik im südlichen Timan, p. 45, that Ihergiceras tetragonas Roemer is merely a young stage of Pronorites cylabolus Phillips, and came from the Carboniferous limestone instead of from the Devonian strata of the Hartz.

\(^b\) Ammonien der Artinsk-Stufe, p. 41.
PRONORITES.

These occurrences help to prove the continuity of life from the Carboniferous into the Permian, and to show that the same conditions existed here as in the Artinsk region of the Ural Mountains, where the Carboniferous beds contain the goniatites out of which most of the Permian ammonites were developed.

Pronorites cyclolobus Phillips, variety arkan saensis Smith

Pl. XII, figs. 12-15.

1866. *Pronorites cyclolobus*, F. A. Roemer, Palæontographica, Vol. IX, p. 11, Pl. IV, figs. 1, a, b, c.

1882. *Pronorites cyclolobus*, E. von Mojsisovici, Cephalop. Mediterranen Triasprovin-

1889. *Pronorites cyclolobus* var. arkan saensis, A. Karpinsky, Ammoniten der Artinsk-

Phillips’s original description of *Goni atites cyclolobus* is as follows:

Discoid, sides flat, back broad, inner whorls half concealed, septa with four round lateral lobes, a small double dorsal lobe, and small acute dorsal sinuses, the first lateral sinuses double, the others simple, all round.

This description is too meager to be of more than generic value, and also the term “dorsal” is used where now “abdominal” is in common use.

The shell is smooth, discoidal, very involute. The sides are nearly
parallel and the breadth increases very slowly; the abdominal shoulders are nearly square, and the abdomen flat. The whorls are deeply embracing and increase rapidly in height. The umbilical shoulders are square, the umbilicus narrow and deep, and increases slowly in diameter.

Dimensions.—The specimen, which was septate throughout, gave the following dimensions:

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>34.0</td>
</tr>
<tr>
<td>Height of last whorl from umbilical shoulders</td>
<td>17.5</td>
</tr>
<tr>
<td>Breadth</td>
<td>10.0</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>7.0</td>
</tr>
</tbody>
</table>

This gives the proportions: 1 : 0.5 : 0.29 : 0.20, which agree almost exactly with Karpinsky's figures, 1 : 0.5 : 0.30 : 0.20. On the Arkansas specimen the involution is shown by the height of the last whorl from the top of the next inner one, 12.5 mm, as compared with the total height of the whorl, which is 17.5 mm. No measurements of this relation were shown on the Russian specimen.

This description applies only to the adult shell, the relative measurements of the nepionic and neanic shells being very different. The Arkansas specimen showed only the last whorl, but the young stages have been worked out by Karpinsky, from whose work the following description is translated:

Around the cylindrical embryonic chamber [Pl. XIII, fig. 2] are coiled very evolute whorls, whose involution increases gradually, but at first only in slight measure [Pl. XIII, fig. 4]. So, for example, the fourth whorl embraces at the beginning only about one-fourth of the preceding; thus the height of the evolute portion of this fourth whorl is six or seven times as great as that of its own involute portion.

With later stages of growth the involution increases so that the whorls become finally completely embracing, and probably conceal a portion of the umbilicus. Because of this mode of growth the umbilicus appears at first broad, and increasing rapidly, then only gradually, and finally not at all, while the whorl continues to grow in height with great rapidity. Thus, at a diameter of the whorl of 4 or 5 millimeters, the umbilicus is about one-half of the total diameter, and at 30 millimeters only about one-fifth. The first and second whorls have a broad elliptical cross section [Pl. XIII, fig. 3], while that of the succeeding whorls becomes higher, with the long elliptical axis vertical [Pl. XIII, fig. 2], and then finally the flanks are bounded by almost parallel lines and the siphonal side is only slightly arched.

Ontogeny.—According to Karpinsky the first or typembryonic stage is latisellate—that is, the suture consists of a broad abdominal saddle; this saddle is next divided by a broad siphonal lobe (Pl. XII, fig. 1).

Ammonoëen der Artinsk-Stufe, p. 8.
The next stage corresponds to the supposed genus *Iheringiceras* Kar- pinsky, of which *Gon. tetraronus* Roemer is the type; in this the whorls are broad, low, and only slightly embracing, the umbilicus wide and shallow. The sutures consist of a long rather narrow siphonal lobe and two broadly rounded lateral lobes. This is the nepionic or larval stage (Pl. XIII, fig. 5a). In the continuation of this stage the whorls become higher and the lobes more complicated, corresponding to the genus *Prolecannites*, of which *Gon. henslowi* Phillips and *Gon. serpentinus* Phillips are typical forms.

In the next stage the shape of shell does not change materially, but the siphonal lobe becomes three-pointed (Pl. XIII, fig. 5); this is the neanic or youthful stage, and corresponds to the genus *Paraprolecanites* Karpinsky, of which the type is *Gon. mixolobus* Sandberger (not Phillips).

The further development consists in the division of the first lateral lobe by a secondary saddle; the shell is then in the ephobic or adult stage, and in *Pronorites* gets no higher in its development.

The sutures are then constant in shape, and consist of a three-pointed siphonal lobe, a first lateral lobe deeply divided by a secondary saddle and five secondary lateral lobes outside the umbilical border, and one on the umbilical shoulder. All the lobes are pointed, and the saddles rounded. The inner lobes, covered by the involution, are unknown.

The sutures, as figured on Pl. XII, fig. 15, show some differences from those figured by Phillips, Pl. XII, fig. 3, and by Karpinsky, Pl. XIII, fig. 5. On the Arkansas specimens the three-pointed siphonal lobe is longer than on the type of Phillips, or the form *P. cyclolobus* variety *uralensis* Karpinsky, the secondary sinus on the first lateral lobe is deeper, and the second lateral lobe is proportionally longer. In this the Arkansas specimen does not depart further from the type than the variety *uralensis*. This difference was thought to be of sufficient importance to characterize a new variety, and the name *P. cyclolobus* Phillips, variety *arkansasensis* was proposed in 1896.

Surface markings.—The shell is smooth and devoid of constrictions or other ornamentation, but on the body chamber of the adult Karpinsky observed weak ribs that are stronger on the abdomen and grow weaker toward the umbilicus.

Affinities.—This species is certainly a variety of Promorites cyclolobus Phillips, but is more involute at the corresponding diameter, and has a narrower umbilicus and a greater number of lateral lobes. Specimens described by de Koninck from Belgium, and by Roemer from the Hartz Mountains in Germany, agree perfectly with the type of Promorites cyclolobus; the English, Belgian, and German beds, in which the species was found, are all in about the same horizon as the bed in which it was found in Arkansas, and are considerably older than the Upper Carboniferous limestone in which it was found in the Ural Mountains. From this Karpinsky thinks the variety uralensis represents a mutation from the type of the species.

The form from the Pyrenees described by Barrois as Goniatites cyclolobus Phillips has been shown by Karpinsky to be a new species, P. barroisi Karpinsky. This form is more evolute than even the type of P. cyclolobus, and its lobes and saddles are broader and also less numerous.

Occurrence.—Promorites cyclolobus Phillips, variety arkansasensis Smith was found with Gastroceras branneri Smith in Arkansas, on Pilot Mountain, Carroll County, 3½ miles southwest of Valley Springs, in T. 17 N., R. 19 W., sec. 18, northeast corner, near the junction of the Chester limestone of the Lower Carboniferous with the Lower Coal Measures or “Millstone grit,” but probably in the Chester stage, judging from the occurrence of Productus cestriensis Meek and Worthen in the same beds with the goniatite. The beds are called A 10 in Prof. H. S. Williams’s section; below them lie 55 feet of micaceous sandstones and shales (A 9 of the section), and below that coarse, reddish-brown fossiliferous limestone, belonging to the Chester stage of the Lower Carboniferous.

The type figured on Pl. XII, figs. 12-15, is the property of the U. S. Geological Survey (National Museum), locality number 1275.

Promorites cyclolobus has been found in England in the upper part of the Mountain limestone; in Belgium in the limestone of Visé; in Germany in the Kohlenkalk of the Hartz; and the variety uralensis has been found in Russia in the Upper Carboniferous limestone of the Ural Mountains in C 2 of the section.

a Geol. Yorkshire, Pt. II, p. 237, Pl. XX, figs. 40-42.
c Paléontographica, Vol. IX, p. 167, Pl. XXVII, fig. 1.
Pronorites siementhali Smith, sp. nov.

Pl. XI, figs. 5–7.

In the Middle Coal Measures of Scott County, Ark., T. 1 N., R. 28 W., sec. 4, SE ¼ of SE ¼, was found a single fragment that seems to belong to *Prodromites*. It is septate, and must have belonged to an individual about 2½ inches in diameter. The sides are smooth and little embracing and almost parallel; the coil is thin and discoidal, and the ventral or external portion seems to be only slightly arched. From the umbilicus toward the ventral portion are seen five lateral lobes that are long and pointed, the saddles being somewhat rounded. The siphonal lobe and part of the first lateral lobe are not seen, that part of the shell being worn so that they can not be made out, but enough of the first lateral lobe is visible to show the secondary saddle that divides it. The septa are very close together, as seems to be the case on all species of this genus.

The nearest known relative is *Pronorites cyclobolus* Phillips, var. *uralensis* Karpinsky.\(^a\) The lobes figured on Pl. I, fig. 4, of Karpinsky’s monograph are very like those of the specimen from Scott County, and the general shape of the coil, the height, and the amount of the involution are about the same on both.

Occurrence.—Middle Coal Measures, Scott County, Ark., T. 1 N., R. 28 W., sec. 4.

Genus Medlicottia Waagen.

It was once thought that ammonites were not found below the Mesozoic, and that all the Paleozoic ammonoids were goniatites. A survival of this idea is seen in Dr. C. A. White’s description of the Permian ammonites of Texas as “Mesozoic types.” But to-day it is recognized that ammonites are quite as characteristic of the Permian as of any later formation.

Medlicottia was one of the first Paleozoic ammonites to be described, a species of this genus having been published by Murchison, Verneuil, and Keyserling\(^b\) under the name *Goniolites orbignyanus*, from the Artinsk formation, Lower Permian, of eastern Russia.

\(^a\) Ammonien der Artinsk-Stufe, p. 8, Pl. I, fig. 4.
\(^b\) Géol. Russie d’Europe etc., Vol. II, p. 375, Pl. XXVI, fig. 6.
Since that time species of this genus have been found in the Permian of India, Sicily, and Texas, and one species has recently been described by Diener\(^a\) from the Lower Trias, so that it is no longer to be regarded as exclusively Paleozoic.

As to the systematic position of this genus there is no doubt, for Karpinsky\(^b\) settled that question by his researches in the ontogeny of *Medlicottia, Pronorites*, and kindred forms. The only question now is whether *Medlicottia* is to be placed in a separate subfamily, Medlicottinae, or whether the larger group, Prolecanitidae, shall be retained. Waagen regards the latter group as a suborder.

Medlicottia copel White.

Shell discoidal, compressed laterally, sides almost flat, narrow umbilicus; narrow flattened venter, with moderately deep ventral furrow bounded by angular and slightly beaded keels. Whorls involute and deeply embracing, becoming more so as age advances. Surface almost smooth, ornamented with fine curving cross ribs; the spiral ribs or striae that are found on some species of *Medlicottia* have not been observed on the Texas specimens. The septa are complex, as is always the case with this genus. The siphonal lobe is long and narrow, with a number of small denticulations on the sides. The external saddle is deeply digitate and rather broad. The lateral saddles are long and tongue-shaped, but entire. The four principal lateral lobes are narrow and deeply bifid. There are also about eight auxiliary lateral lobes, of which the two highest upon the sides are bifid, and those nearer the umbilicus undivided, thus exemplifying Jackson's law of localized stages of development.

Occurrence.—In the Permian of Baylor County, Tex., at the military crossing on the Big Wichita River; also near San Angelo, Tom Green County, Tex.

\(^b\)Ammoneen der Artinsk-Stufe.
Since this genus is so widely spread and so characteristic of the Permian, this horizon has been called the zone of *Medlicottia*. Closely related species have been found in the same horizon and in approximately the same association in the Artinsk formation of the Ural Mountains; in the Productus limestone of the Salt Range of India; in the Fusulina limestone of Sicily; and in the Wichita formation of northern Texas. Haug has attempted to subdivide the Permian into zones, based on species of *Medlicottia*, but this is impracticable, since these species are not inter-regional in distribution and since the exact stratigraphic relations of these beds in various parts of the world are not yet known.

Family NORITIDÆ.

Genus *Schuchertites* gen. nov.

Form discoidal, laterally compressed; sides flattened; abdomen narrow, angular, and channelled. Close coiled, involute, with narrow umbilicus. Surface devoid of ribs, constrictions, and other ornamentation, except curved cross strie of growth, forming gentle undulations on the shell.

Septa ammonitic and complex, with numerous lobes and saddles. Siphonal lobe divided into two short lobes by a secondary siphonal saddle. First lateral saddle divided by a short rounded indentation or adventitious lobe; all the other saddles rounded and entire. Lobes somewhat digitate and club-shaped, constricted at the upper portion. The septa, instead of running straight across the sides, are arranged in a backward-pointing curve, parallel with the strie of growth.

No similar Paleozoic genus has been described, so its systematic position is somewhat doubtful, especially since the young stages of the shell are unknown. But the compressed, involute, discoidal form and the complication of the septa suggest a relationship to *Medlicottia*, hence it is grouped near that genus under the superfamliy Prolecanitidae, and doubtfully referred to the Noritidae. The shape of the whorl, the character of the septa, and the surface of the shell remind one strongly of *Haurites* Mojsisovics, of the Upper Trias, but *Schuchertites* is much too complex to have been the ancestor of that genus; it is probably only a case of parallelism, in accelerated development from a kindred stock.

a Études sur les Goniatites, p. 70.
No Permian forms are known that could have developed out of this genus, so probably it is the end of a series which itself is at present unknown, for Pronorites could not have been the ancestor, and this is the only involute discoidal member of the Prolecanitidae known from the Carboniferous. This genus is the most highly specialized form known in the Carboniferous, and is as complex as any yet described from the Permian. The occurrence of such forms suggests the great gaps that exist in our knowledge of the Paleozoic ammonoids, and inspires the hope that eventually these gaps will be filled out.

Occurrence.—Schuchertites is at present known only from the Upper Coal Measures, the type of the genus, Schuchertites grahami sp. nov., being known from only a single locality, Graham, Tex. Named in honor of Mr. Charles Schuchert, of the U. S. National Museum.

Schuchertites grahami Smith, sp. nov.

This species, represented by only a single imperfect specimen, U. S. Nat. Mus. No. 27206, is laterally compressed, discoidal, involute, with flattened sides, narrow umbilicus, and narrow channeled abdomen. Surface so far as known is devoid of ribs and constrictions, but has fine curved cross striae of growth, forming gentle undulations on the shell.

The septa are complex and ammonitic, divided into eight lobes and saddles. The siphonal lobe is divided by a short angular secondary saddle; the first five lateral lobes are undivided and digitate, and there are three simple auxiliary lobes, not digitate, but club-shaped. The first lateral saddle is divided by a short rounded secondary lobe, the other lateral saddles are undivided, and rounded at the extremities. The lobes are sharply constricted at the upper portion, giving a club shape to the lobes and a phylliform appearance to the saddles. The septa, instead of running in a straight line across the sides, are arranged in a backward-pointing curve, parallel to the striae of growth. Internal septa unknown.

Occurrence.—Upper Coal Measures, Graham, Young County, Tex., about a thousand feet below the Permian, associated with a typical Upper Coal Measures fauna. Collected by A. B. Gant.
Dimensions of the type specimen.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>27</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>14.5</td>
</tr>
<tr>
<td>Height of last whorl from the preceding</td>
<td>9.5</td>
</tr>
<tr>
<td>Width of last whorl</td>
<td>6</td>
</tr>
<tr>
<td>Involution</td>
<td>5</td>
</tr>
<tr>
<td>Width of umbilicus, about</td>
<td>3</td>
</tr>
</tbody>
</table>

The specimen was septate throughout, and must, if complete, have reached at least twice this size.

Family PROLECANITIDÉ. s. str.

In this paper the superfamily Prolecanitidae is used in the broad sense, as it was by Karpinsky, and is thus equivalent to Hyatt's superfamily Prolecanitida. The family name Prolecanitidae is applied only to the immediate allies of *Prolecanites*. E. Haug\(^a\) has recently proposed to substitute for this group the name Ibergiceratidae, based on a supposed genus *Ibergiceras* Karpinsky, thought to represent the radicle of the stock, from which *Prolecanites*, *Paraprolecanites*, and *Pronorites* came. But Holzapfel\(^b\) has shown that the genus *Ibergiceras* (Gen. *tetragnus* Roemer) was based merely on a young specimen of *Pronorites cyclobas*, and came, not from the Devonian, but from the Lower Carboniferous limestone of the Iberg in the Hartz.

Genus Prolecanites Mojsisovics.

The genus *Prolecanites* was named by Mojsisovics\(^c\) to include evolute, compressed forms, with wide umbilici, slightly embracing whorls, and goniatitic, lanceolate septa. The external lobe is undivided, the two or three lateral lobes pointed and tongue-shaped. The saddles are spatulate and rounded. The antisiphonal lobe is long and pointed, flanked by a pair of short, rounded lobes.

As restricted by Haug,\(^d\) *Prolecanites* is confined to the uppermost Devonian and the Carboniferous. The type of the genus is *Goniatites mixolobus* Sandberger of the Lower Carboniferous. One American species is found in the Middle Coal Measures.

\(^a\) Études sur les Goniatites, p. 50.
\(^b\) Die Cephalopoden des Donamik im südlichen Timan, p. 45.
\(^c\) Cephalop. der Mediterrane Triasprovinz, p. 199.
\(^d\) Études sur les Goniatites, p. 52.
Prolecantites ? compactus Meek and Worthen.

Plate V, figs. 5–7.

The systematic position of this species is somewhat doubtful; the septa are of the Prolecantites type, while the cross section of the whorl retains the Anarcestes shape, approaching that of Gastroiceras. It is evolute, with broad, slightly arched whorls, wide umbilicus, and rounded umbilical shoulder. It may be that this species should be made the type for a new genus of the Prolecanitidae, for the septa are lanceolate, consisting of a long tongue-shaped ventral lobe, flanked by two similar laterals, while the saddles are broadly rounded; but the writer has not seen the original, and is of the opinion that no one has a right to found genera or species on illustrations alone, of the accuracy of which he has no knowledge. It is barely possible, but not at all likely, that in this case, as in that of Goniatites greenicastlensis, the impressions of the internal septa on the ventral of the next inner whorl give the lanceolate character to the lobes.

Occurrence and locality.—Middle Coal Measures, Menard and Macoupin counties, Ill.

Prolecantites greenii Miller.

Pl. VIII, figs. 4, 5a, 5b.

Shell minute, discoidal, evolute, volutions more than four in number, narrow, and little embracing. Abdomen narrow and rounded. Cross section of the whorl elliptical. Umbilicus wide and shallow. Septa close and lanceolate, consisting of a short, pointed, tongue-shaped ventral lobe, flanked by two similar laterals. The saddles are rounded and club-shaped. The shape and the septa resemble Prolecantites lyoni Meek and Worthen,
but in *P. greenii*, the ventral lobe is broader and dart-shaped, while in *P. lyoni* it is simply a blunt point.

Occurrence.—Lower Carboniferous, Kinderhook, New Albany, Ind.

Prolecanites gurleyi Smith, sp. nov.

Pl. XXIV, figs. 1-4.

Shell extremely evolute, laterally compressed, widely umbilicate. Whorls low, and increasing very slowly in height, little embracing, and scarcely indented by the inner volutions. The umbilicus is wide and shallow. The cross section of the whorl is quadrate oval, the curve being interrupted by the rounded abdominal shoulders. The height of the whorl is one-fourth of the total diameter, and the breadth is slightly greater than the height. The width of the umbilicus is one-fourth of the total diameter of the shell. Six volutions are seen at the diameter of 16 mm.

The surface of the cast is entirely smooth, none of the outer shell being preserved. The length of the body chamber is unknown, as the only specimen seen is septate to the end. The septa are spatulate, the ventral lobe is undivided and tongue-shaped; the first lateral lobe is similar, and of the same size; the second lateral is two-thirds of the length of the first, and similar in shape. There is a short auxiliary lobe on the umbilical slope.

This species is most nearly related to *Prolecanites greenii* Miller, but differs from it in the greater evolution, wider umbilicus, less compressed whorls, and slower increase in size.

Occurrence.—Lower Carboniferous, Kinderhook stage, Cedar Gap, Wright County, Mo. The type specimen, No. 8600, paleontologic collection, Walker Museum, University of Chicago, was loaned to the writer by Dr. Stuart Weller. The specific name is given in honor of Prof. W. F. E. Gurley.

Prolecanites houghtoni Winchell.

Shell discoidal, evolute: whorls but slightly embracing, with flattened venters and sides, and cross section elongate-oval. Umbilicus wide and shallow. Surface smooth. Septa lanceolate, with pointed tongue-shaped lobes and rounded saddles; an undivided ventral lobe, two principal and an auxiliary lateral lobe.
This species differs (according to Winchell) from P. lyoni in the greater relative length of the second lateral lobe and the auxiliary saddle, and also in the greater compression of the cross section of the whorl; from P. henslowi Sowerby in the more acute lateral lobes and greater length of the saddles.

Occurrence.—Lower Carboniferous, Kinderhook stage, Marshall, Mich.

Prolecanites ? louisianensis Rowley.

Pl. VI, figs. 6-8.

This minute species is of somewhat doubtful systematic position. It is hardly possible to determine it from Rowley's figures, but the writer is indebted to Dr. Stuart Weller, of the University of Chicago, for the loan of several well-preserved specimens from the Gurley collection. On these the lanceolate type of lobes can be clearly seen, resembling the young stages of *Pronorites cyclolobus*, the so-called "Ibergiceras" stage.

The whorls are evolute, depressed, little embracing. The shell has one or two constrictions to a revolution. The general shape reminds one strongly of *Anarcestes*, but the septa show that the transition to the stock of the Prolecanitidae has already been made. The ventral lobe is long, tongue-shaped, and undivided; the lateral lobe is lanceolate, and the second lateral or auxiliary lobe is shallow, broad, and lies just outside of the umbilicus. The internal septa consist of a pointed antisiphonal lobe, flanked by a pair of shallow laterals. All the saddles are rounded.

Occurrence.—Lower Carboniferous, Kinderhook stage, Louisiana, Mo.

The figured specimen is deposited in the paleontologic collection, Walker Museum, University of Chicago (Gurley collection).

Prolecanites lyoni Meek and Worthen.

Pl. XVI, fig. 18; Pl. XIX, figs. 9-11.

1879. *Goniatisites lyoni*, J. Hall, Pal. X. Y., Vol. V. Pt. II, p. 476, Pl. LXXII, fig. 12; Pl. LXXIII, figs. 9-11; Pl. LXXIV, fig. 7.

1899. *Prolecanites lyoni*, F. Frech, Die Steinkohlenformation, Pl. XLVI, 1, fig. 11.

1901. *Prolecanites lyoni*, F. Frech, Ueber devonische Ammonitenn., p. 64, fig. 21 c.

Shell discoidal, compressed, evolute; whorls but little embracing, only about one-fifth of the inner volutions being covered by the outer ones. Whorls six or more in number, the inner ones being semielliptical in cross section and the outer ones trapezoidal, with flattened sides and abdomen and rounded shoulders. Breadth of the whorl is two thirds of the height. The whorls enlarge very slowly, giving a large number of whorls for a small diameter.

Length of body chamber unknown, but fragments indicate that specimens have attained a diameter of 80 or 90 mm., exclusive of body chamber.

Surface of the shell unknown, but the cast is smooth and devoid of constrictions and all other surface ornamentation.

Septa lanceolate, with pointed and slightly mucronate lobes and rounded saddles. Ventral lobe undivided and shorter than the laterals, which are two in number; the dorsal (internal) lobes consist of an undivided tongue-shaped antisiphonal, with a short, blunt lobe on the umbilical margin. The total number of lobes is therefore one pair less than on most species of *Prolecanites*, but this difference has not been considered by any writers to be of generic value, since so many otherwise typical species of *Prolecanites* possess this number of lobes, and several even have one more pair than the normal.

Occurrence.—*Prolecanites lyoni* occurs in the Lower Carboniferous, Kinderhook stage, at Rockford, Ind., along with *Agnidites rotatorius* de Koninck, *Muensteroceras oweni* Hall, *M. paralleum* Hall, *Prodromites prematurus* Smith and Weller, and *P. gorbyi* Miller. It has also been found in the same horizon in the Waverly group of Granville, Ohio.

Prolecanites marshallensis Winchell.

Shell evolute, discoidal, little embracing; cross section elliptical; impression moderate. Whorls at least four in number, with slow increase of growth. Umbilicus wide. Surface smooth. Length of body chamber unknown.

Septa lanceolate and close together. Ventral lobe long, pointed, and narrow; first and second lateral lobes not so large as the ventral and not sharply terminated. Auxiliary lobe outside of the umbilical border short and blunt. Antisiphonal lobe deep.

The nearest American species is *P. lyoni* Meek and Worthen, from which *P. marshallensis* differs in the additional pair of lobes outside of the umbilical border and in the greater length of the ventral lobe. It is also somewhat more involute than *P. lyoni*. Winchell thought this species to be nearest akin to *P. mixolobus* Phillips, which was chosen by Mojsisovics as the type of *Prolecanites*, but the lobes of *P. mixolobus* are not mucronate but rather club-shaped, and the auxiliary lobe is nearly as large as the principal laterals, and the ventral lobe seems to be very small.

Occurrence.—*P. marshallensis* was found in the Lower Carboniferous Kinderhook stage, Marshall group, at Marshall, Moscow, Battle Creek, Napoleon Cut, Mich., and in the Waverly group at Weymouth and Newark, Ohio.

Superfamily GLYPHIOCERATIDÆ.

This group was established by Hyatt to include a number of species from the Upper Devonian, Carboniferous, and Permian. The oldest genera are *Agyanides* (*Brancoceras*) and *Prionoceras*, which began in the Upper Devonian and attained their acme in the Lower Carboniferous. Both genera are smooth-shelled, and both have a pointed, undivided, ventral lobe and two pairs of lateral lobes, of which the first is angular; the saddles of most species of both genera are broadly rounded, although on *Prionoceras* (*goniatites*) belvalianum de Koninck the first lateral saddles are angular. The only difference between the two genera is that *Agyanides* is compressed, high-whorled, almost discoidal, and very involute; while *Prionoceras* is broad, low-whorled, and evolute. Hyatt considered *Brancoceras* as the radicle of the Glyphioceratidae, and traced the group from *Anarcestes* of the Lower Devonian, through *Tornoceras* (*Parodoceras*) of the

Middle Devonian. He admitted the near relationship between the two genera, but considered *Prionoceras* as the link between the supposed radicle *Brancoceras* and *Glyphioceras*. The genealogy of the *Glyphioceratidae*, according to Hyatt, is as follows:

\[
\begin{align*}
\text{Prionoceras} & \rightarrow \text{Glyphioceras} \\
\text{Anarcestes} & \rightarrow \text{Tornoceras} \rightarrow \text{Brancoceras} \\
\text{Muensteroceras} & \rightarrow \text{Gastrioceras} \rightarrow \text{Paralegoceras} \\
\text{Dimeroceras} & \rightarrow \text{Pericyclus}.
\end{align*}
\]

Prof. K. A. von Zittel\(^a\) has recently merged *Prionoceras* in *Brancoceras*, not even giving subgeneric rank to the former. But even though they may be nearly related, their phylogeny justifies the separation. Both genera probably branched off about the same time from *Paradooceras* or from *Sporadoceras* in the Upper Devonian, but *Aganides* (*Brancoceras*) is not the radicle, at least of the main branch of the *Glyphioceratidae*. While it is possible, although not known, that *Muensteroceras* may go through a *Brancoceras* stage, *Prionoceras* does not, neither does *Glyphioceras*, nor *Goniattites* s. str. *Prionoceras* seems to have come directly from *Paradooceras*, and in turn gave rise to *Glyphioceras*. It seems likely, too, that some species of *Gastrioceras* descended directly from *Prionoceras* by division of the ventral lobe, while others may have come from *Glyphioceras*. In any case, whether it came off from the radicle, or through *Glyphioceras*, *Gastrioceras* is a later branch than *Glyphioceras*, having its maximum in the Upper Coal Measures; it therefore deserves to rank as an independent genus. It also seems proper to retain *Prionoceras?*, *Aganides* (*Brancoceras*), and *Muensteroceras*, with full generic rank.

Frech\(^b\) derives the *Glyphioceratidae* from *Sporadoceras*, but this hypothesis is not in harmony with the ontogeny of *Goniattites* and *Glyphioceras*. However, too little is known of the development of these forms to warrant any positive statement.

Some members, at least, of this group are prosiphonate, and deserve the designation "ammonite" as much as *Lobites* of the Trias, for simplicity of the septa is no longer considered as a distinctive mark of the goniatites.

Hyatt considered the *Glyphioceratidae* as a family, but E. Haug\(^c\) is of the opinion that it is rather a group of morphological equivalents than a genetic series. Haug even places *Aganides* and its descendants in a different

\(^a\)Grundzüge der Paläont., p. 398.
\(^b\)Ueber devonische Ammoniten, p. 84.
\(^c\)Études sur les Goniattites, p. 39.
phylum or superfamily, and derives them from a different Devonian genus, *Tornoceras*. This seems to the writer to be going further than the facts warrant. But it is beyond doubt that the Glyphioceratidae, as Hyatt used the term, can be divided into two series. The writer prefers to retain the two under the same phylum or superfamily, Glyphioceratidae, and to name each of the component series or families after the most characteristic genus.

Under the Glyphioceratidae s. str. would fall *Prionoceras*?, *Pericyclus*, *Glyphioceras*, *Goniatites*, *Gastriceras*, *Paralegoceras*, *Schistoceras*.

Under the Aganididae would fall *Aganides*, *Muensteroceras*, *Gonioloboceras*, *Dimorphoceras*, *Milleroceus*.

From the Glyphioceratidae it appears that the Arcestidae and the Trapitidae have been derived. The Ptychitidae seem to have sprung from the Aganididae.

Family **Glyphioceratidae** s. str.

Genus Prionoceras? Hyatt.

This genus was established by Hyatt* to include rather evolute, low-whorled forms, with undivided external lobes, and angular lobes and saddles. The type chosen was *Goniatites divisus* Muenster of the Devonian. Another species assigned to the genus is *Goniatites belradianus* de Koninck from the Lower Carboniferous. It is very doubtful if either species fits the description. Certainly neither has angular saddles, and even the external lobe of *Goniatites belradianus* is divided at maturity.

As a consequence of this the genus has been either abandoned entirely or merged by most authors with *Aganides* (*Brancoceras*). Whether this be correct or not, the ontogeny of later forms teaches that such a genus was the radicle of the greater part of the Glyphioceratidae. It is very doubtful whether *Prionoceras* is represented in America at all, but three species are doubtfully assigned to it. Frech* has shown that *Goniatites divisus*, the type of *Prionoceras*, is identical with *Goniatites sulcatus* Muenster and *G. linearis* Muenster, both listed by Hyatt as most characteristic members of *Brancoceras* (*Aganides*). A strict ruling would thus throw this genus out entirely, although Haug proposes to retain it on account of its supposedly longer body chamber.

Ueber devonische Ammonien, p. 74.*
PHYLOGENIC TABLE OF THE GLYPHIOCERATIDÆ.
PRIONOCERAS.

Prionoceras ? andrewsi Winchell.

Shell subglobose, evolute; whorls broader than high, low-arched, helmet-shaped, greatest width close to umbilical shoulder. Umbilicus deep and wide, umbilical shoulders abrupt and bearing faint ribs. Surface ornamented with four constrictions to a revolution.

Septa consisting of a long, undivided, tongue-shaped, pointed ventral lobe, a similar but shorter and broader lateral lobe, a rather narrow club-shaped external saddle, and a broad oblique lateral.

Occurrence.—Lower Carboniferous, Kinderhook stage, Lower Waverly group, Newark, Ohio.

Prionoceras ? brownense Miller.

Pl. V, figs. 1 and 2.

Shell globose, evolute, broadly rounded on the venter, and rather deeply embracing the outer whors, covering about three-fifths of the inner ones. Umbilicus rather wide, being about two-fifths of the total diameter of the shell, and exposing all the inner whors. Surface of the shell apparently smooth.

Septa not distinctly made out, but consisting of a pointed ventral lobe, with a pair of angular laterals, and probably also with a pair of auxiliary lobes on the umbilical shoulders. The dorsal lobes correspond to the external, as well as could be seen on the broken face of the whorl.

Occurrence.—Lower Carboniferous, Kinderhook stage, Knobstone group, Brown County, Ind.

Prionoceras ? ohioensis Winchell.

Shell subglobose, umbilicated; whorl depressed, helmet-shaped, abdomen broadly arched, sides sloping steeply to the abrupt umbilicus, which has diameter of more than one-half of the diameter of the shell.

Septa consisting of a slender ventral lobe with rounded end, a first
lateral lobe, twice as long as the ventral, clavate and pointed, and a short triangular auxiliary lobe on the umbilical shoulder. The external saddle is long and broadly rounded, the lateral saddle is narrower and shorter.

This species is said to be most nearly related to "Goniatites" allei Windchell, but differs in its shorter and rounded ventral lobe, its longer lateral, and in possessing the auxiliary lobe; also its sides are less convex, and the umbilicus less abrupt than in "G. allei."

Occurrence.—Lower Carboniferous, Kinderhook stage, Lower Waverly group, Newark, Ohio.

Genus Pericyclus Mojsisovics.

Goniatites princeps de Koninck was chosen by E. von Mojsisovics as the type of the genus _Pericyclus_, characterized by its angular lobes, spatulate saddles, and coarse ribs crossing the abdomen. Hyatt included this under his family _Glyphioceratidae_, on account of a supposed transition from _Brancoceras_ to _Pericyclus_. In a later paper Hyatt places _Pericyclus_ in a new family, Pericyclididae, supposed to differ from the Glyphioceratidae in the possession of two internal lateral lobes instead of one on each side. This was based on Haug's mistaken copy of the septa of _Pericyclus kochii_ Holzapfel, in which there seem to be two internal laterals. A figure of the septa of this species is given by Holzapfel, showing but one internal lateral lobe on each side. There can, therefore, be no reason for separating this genus from the Glyphioceratidae.

Pericyclus blairi Miller and Gurley.

Pl. XVI, figs. 4, 5.

Shell discoidal, moderately evolute, becoming more so with age; whorls compressed, with rounded venter and flattened sides, with subangular umbilical shoulders. Umbilicus narrow in youth, but widening rapidly with age as the spiral opens out, on account of the fact that the whorl increases very slowly in height. Height of whorl slightly greater than its

PERICYCLUS. 61
greatest breadth, which is just above the umbilical shoulders. The surface is ornamented by rounded furrows and angular ridges that curve from the umbilicus gently backward toward the periphery, and then on the abdomen bend sharply backward in a sinus. This ornamentation is characteristic of Pericyclus, to which genus the species is assigned, although the septa have not been seen. It is more evolute and less robust than P. princeps, but is more nearly related to that than to any other known species. The strong transverse ribs crossing the abdomen without interruption are not known on any other genus of goniatites, and much reliance is placed in this character, even in the absence of knowledge of the septa.

Occurrence.—Lower Carboniferous, Kinderhook stage, Sedalia, Mo.

Pericyclus princeps de Koninck.

1890. Glyphioceras princeps, Steinmann and Döderlein, Elemente der Paläont., p. 393.

J. J. Bigsby a cites Goniatites princeps from the Goniatite limestone of Rockford, Ind., but no American collection is known to have an authentic specimen of this, nor is it cited in any list of American species. In the paleontologic collection of the Walker Museum, University of Chicago, is a specimen wrongly labeled “Goniatites princeps,” and this may have been the cause of the mistaken reference. Bigsby’s citation is, therefore, probably a mistake. But it is by no means improbable that P. princeps may be found in the Kinderhook of America, since P. blairi, a closely related form, shows that the genus Pericyclus is represented in America, and since the rest of the Kinderhook fauna so closely resembles that of Ireland and Belgium.

a Thesaurus Devonico-Carboniferus, p. 336.
Genus Glyphioceras Hyatt (emend. Haug).

In establishing his genus *Glyphioceras* Hyatt took for the type *Goniatiates sphaericus* Martin, already chosen by de Haan as the type of *Goniatiates*, so that the group of *G. sphaericus* and *G. striatus* can not properly come under this genus. But Hyatt divided his genus into two divisions, the second of which is characterized by open umbilici, less involution, broader and lower whorls, semilunular or trapezoidal cross section, fine lateral or umbilical ribs. Of the species mentioned by Hyatt under this section *Goniatiates diadema* Goldfuss is the best known. E. Haug* has accordingly proposed to retain Hyatt’s name for this section, and has selected *G. diadema* as the type, although the first species mentioned by Hyatt is *G. obtusus* Phillips, which belongs to the group of *G. striatus*.

This division seems quite satisfactory from the stratigraphic standpoint, for *Goniatiates* s. str. is almost confined to the Visé horizon of the Lower Carboniferous, while *Glyphioceras* as thus restricted is more common in the Lower Coal Measures.

Glyphioceras calyx Phillips.

Pl. XVIII.

This species was selected by Hyatt as the type of a new genus *Homoceras*, but its characters are common to the young of all members of *Glyphioceras* when they have just made the transition from the *Prionoceras* stage of growth. Holzapfel thought this was the young of *G. mutabile* Phillips, as, indeed, it may be, but the connection has not yet been demonstrated.

The shell is much smaller than is usual with the *Glyphioceratidae*, not

reaching a greater diameter than 6 mm.; it is evolute, has wide open umbilicus, low flattened whors with trapezoidal cross section, faint umbilical ribs which reach almost to the abdomen. There are about three rather faint constrictions to a revolution. The surface is ornamented only with fine smooth cross striae. The septa are like those figured by de Koninck; the differentiation into two external lobes has not taken place, as in the rest of the section *Glyphioceras*, but it is indicated by the incipient ventral saddle. These are certainly persistent larval characters, and the so-called species may be merely a case of arrested development such as is seen in the young of *Glyphioceras diadema*, but whether it is really the young of some other species, or whether it is a separate form, can hardly be determined as yet. At any rate the adult of *Glyphioceras untabile* has not been found in America, and the American form can hardly be the young of that species. Nor in the beds where it occurred have any other species with similar young been found; in fact no other species of *Glyphioceras* has been found there at all. To the writer it seems quite possible that *G. calyx* is only the male of some species of the group of *Goniatites striatus*, since in England, Belgium, and America it is associated with this group, and more especially because the young stages are exactly alike in these. A demonstration of this is at present impossible, for we know nothing of sexual variations in the ammonoids.

Occurrence.—The specimens figured here are deposited in the geologic collection of Leeland Stanford Junior University, California, and were found in the Lower Carboniferous, St. Louis-Chester stage, Fayetteville shale, at Moorefield, Ark., associated with *Goniatites crenistria* Phillips, and many other species of invertebrates characteristic of this horizon. In Europe the species is found in the Visé horizon, in England, Belgium, and Germany.

? *Glyphioceras diadema* Goldfuss.

Pl. XII, fig. 10.

CARBONIFEROUS AMMONOIDS OF AMERICA.

In England, Belgium, and Germany this species is characteristic of the Lower Coal Measures; in Arctic America it has been found on Berg Island, brought in by the Nares expedition.

It is quite likely that Phillips’s name, *G. striolatum*, will take precedence over *G. diadema*, which Goldfuss left in manuscript, and which Beyrich afterwards published.

A similar species has been described by F. Roemer under the name *Goniatites listeri* Martin, from Carboniferous limestone of Sumatra, although this latter may be *Goniatites beyrichianum* de Koninck. At any rate this type of *Glyphioceras* is widespread, characteristic of Lower Coal Measures, and may be chosen as a zone fossil. It has not yet been found within the United States, but may well be expected there on account of general similarity of faunas of this horizon.

Glyphioceras ? hathawayanum McChesney.

The following description is quoted from McChesney’s last paper:

Shell moderately small, discoidal, much compressed. Volutions two to three, strongly embracing, and concealing about two-thirds of the inner volutions; umbilicus comparatively wide and shallow. Dorsum [venter] extremely narrow, having a linear depression along its center; sides of the volutions very slightly and regularly

b Palaeontographica, Vol. XXVII, Pl. III, fig. 6.
convex to the slope into the umbilicus, which is more sharply curved. Aperture very narrow and much elongated. Septa on the sides of the volutions strongly sigmoidal, with the curves or lobes which stand back toward the apex much more sharply turned than those pointing in the opposite direction. Outer shell entirely wanting in the specimen.

McChesney's drawing and description do not permit a certain determination as to whether this species is a *Glyphioceras* or a *Gastrioceras*.

Occurrence.—Middle Coal Measures, LaSalle, Ill.

Glyphioceras ? leviculum Miller and Faber.

Pl. VIII, figs. 10, 11.

Shell discoidal, whorl highly arched with gently rounded sides and highly arched narrow abdomen. Umbilical shoulders abrupt. Whorls deeply embracing, the outer whorl being indented to about one-third of its height by the next inner volution. Width of whorl is more than three-fourths of its height. Umbilicus wide and deep, width is one-third of the total diameter. On the inner whorls the umbilicus is proportionally narrower, and the breadth of the whorl greater than its height.

Surface of shell smooth, no constrictions or ribs having been seen. Specimens septate throughout, thus the body chamber and aperture are unknown.

Septa close together and sinuous, as is usual in the Glyphioceratidae. The ventral lobe is divided by a small pointed siphonal saddle; the lateral lobe is funnel-shaped and pointed; the external and the lateral saddles are broadly rounded. There are three internal lobes as in all typical Glyphioceratidae, but their shape could not be ascertained.

Occurrence.—Lower Carboniferous, St. Louis stage, Crab Orchard, Ky. The type is deposited in the paleontologic collection, Walker Museum, University of Chicago.

Glyphioceras pygmaeum Winchell.

Shell globose, involute, umbilicus small. Whorl broad, depressed, breadth equal to one-half of the total diameter. Surface with four constrictions to a revolution.
Septa consisting of a broad, obtusely rounded ventral lobe, with a very small siphonal indentation; lateral lobe shallow, acute, funnel-shaped; ventral and lateral saddles broad, shallow, with circular ends.

Winchell compares this species with Glyphioceras striolatum Phillips, from which it differs in the smaller umbilicus, larger ventral lobe, and ventral saddles. The description, however, would make it appear that this species is nearer to Glyphioceras mutabile Phillips.

Occurrence.—Supposed to have come from the Lower Carboniferous (?), Kinderhook stage, Marshall group, Battle Creek (?), Mich.

Genus Goniatites de Haan.

When Hyatt undertook a revision of the goniatites in his Genera of Fossil Cephalopods he did not include Goniatites itself in his list, but included the type of all this stock in his new genus Glyphioceras. Many years before this de Haan had described and figured the genus Goniatites, using G. sphaericus Martin as the type; in so doing, he complied with all the laws of nomenclature, and no genus stands on a firmer basis than this. Therefore when it has been found that de Haan included under this name many species of diverse origin, it is quite proper to give separate generic titles to these; but the type of the original genus can not receive any new name, and must always stand for the original species and all like it.

Hyatt first mentions Goniatites sphaericus under the description Glyphioceras, and therefore this species is to be regarded as the type of the genus, rather than G. crenistria, which authors usually cite as the type. Hyatt divides the genus Glyphioceras into two sections:

I. Involute globose shells, including such forms as Goniatites sphaericus Martin, G. crenistria Phillips, and G. striatus Sowerby.

II. Forms with compressed whorls, and open umbilici, including Goniatites obtusus Phillips as type of the section, G. diadema Goldfuss, G. platylobus Phillips, G. barbotanus M. V. K., and others. Of this second section, G. diadema can not be included in the same genus with G. sphaericus, and either a new name will have to be given it or else Hyatt's name will have to be restricted to this section. E. Haug proposes to restrict the name Goniatites

a Mon. Ammon. et Gon., 1825, p. 159.

to species of the type of *G. sphaericus*, *G. crenistria*, and *G. striatus*; and to restrict *Glyphioceras* to the type of *G. diadema*.

As thus restricted, *Goniatites* is almost entirely confined to the Lower Carboniferous zone of *Goniatites striatus*, and is thus of great importance in stratigraphic paleontology. It has been shown by researches in the ontogeny of *Goniatites crenistria* \(^a\) and *Glyphioceras diadema* \(^b\) that these two genera have a common origin in *Prionoceras*, which is considered by most paleontologists as a synonym of *Branoceras* Hyatt, or *Acanthodes* de Montfort.

F. Frech \(^c\) thinks that *Goniatites* s. str. was derived from *Sporadoceras*; and certainly *S. mammilliferum* Sandberger and *S. subinvolutum* Muenster, as figured by Frech, do resemble closely what the writer has described as the *Prionoceras* stage of growth in *Goniatites*. It is, however, by no means certain that these species should be assigned to *Sporadoceras*, as Hyatt took *Goniatites mammillifer* as the type of his genus *Dimoceras*, and regarded it as transitional from *Branoceras* to *Pericyclus*. But if these species should be accepted as genuine members of *Sporadoceras*, the writer agrees with Frech in regarding this genus as the ancestral stock of the Glyphioceratidae s. str.

Goniatites choctawensis Shumard.

The following description is quoted from Shumard's paper:

Shell discoidal, broadly and strongly rounded on the dorsum [abdomen] and flattened laterally, inner volutions entirely concealed by the outer one; umbilicus small, its diameter scarcely equal to one-sixth the breadth of the volutions; transverse diameter of volution about equal to the breadth from dorsal to ventral side; aperture lunate, much wider than high; surface marked with fine distinct revolving lines, less than the width of the intervals between, crossed by extremely fine, crowded, transverse striae. *Septae* having but one lateral lobe on either side; dorsal [ventral] lobe as wide as long, divided into two lanceolate branches by an accessory saddle, which is truncated and bifid at tip and extends almost to the middle of the lobe; dorsal [ventral] saddle of the same form, but wider and double the length of the branches of the dorsal [ventral] lobe; superior lateral lobe wider than the dorsal [ventral] saddle, and contracted at extremity to an acute point.

This shell resembles the *G. striatus* (Sowerby) both in the form and number of the lobes of the *septae* and its surface markings, and for several years I have had

\(^b\) W. Branco, Palaeontographica, Vol. XXVII, Pt. IV, figs. 1 a-o.
\(^c\) Ueber devonische Ammoneeen, p. 84.
it in my cabinet under the latter name. A closer examination, however, shows points of difference which appear to me to be of specific value. The striae of our shell are finer and more crowded; the dorsum [abdomen] is more broadly rounded, and the umbilicus is proportionally smaller.

This description shows the species to belong to the group of *G. striatus*, and the differences noted are precisely those characteristic of *G. crenistria*, which has been found in both Arkansas and Texas, and of which *Goniatites choctawensis* may turn out to be a synonym.

Occurrence.—Lower Carboniferous, St. Louis-Chester stage (?), Bend formation, Choctaw Nation (?), Ind. T.

Goniatites crenistria Phillips.

Pl. X, figs. 12–16; Pl. XIV; Pl. XV; Pl. XVI, figs. 1a–j; Pl. XXVI, figs. 1–5.

1870. *Goniatites sphæricus* (not Martin), F. Roemer, Geol. Oberschlesien, p. 55, Pl. VI, figs. 2a–b.

This species has been united by many paleontologists with *Goniatites sphæricus* and by still others with *G. striatus*, and in fact all three species
have so much in common that it is very hard to distinguish them; it is quite possible that they are only varieties of *G. sphæricus*.

The form is globose, broad, low-whorled, with semilunular cross section. The umbilicus is very narrow, about one-tenth of the diameter of the shell, so that the inner coils are concealed. There are four or five constrictions to a revolution, visible both on the shell and the cast. The whorl is exceedingly involute, each whorl being indented to about three-fifths of its height by the preceding. The shell is marked with distinct cross striae with fine, sharp crenulations, which show only toward maturity. The elevations between the pits of the crenulations become in the adult indistinct spiral striations, giving a finely reticulate aspect to the surface. These are not visible on the cast. In the adult stage the cross striae bundle near the umbilicus, forming weak incipient nodes.

From *G. sphæricus* this species is distinguished by being more compressed laterally, less globose, having narrower umbilicus, weaker spiral striae, and coarser cross striae. From *G. striatus* this species may be distinguished chiefly by its slightly narrower umbilicus, its finer spiral striae, and coarser cross striae. The table below, compiled from Foord and Crick's catalogue, shows the principal differences and agreements between the three species:

<table>
<thead>
<tr>
<th></th>
<th>G. crenistræ</th>
<th>G. striatus</th>
<th>G. sphæricus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadth in proportion to diameter</td>
<td>B=½ D</td>
<td>B=½ D</td>
<td>B=½ D</td>
</tr>
<tr>
<td>Height of whorl to width</td>
<td>A little wider than</td>
<td>Wider than high</td>
<td></td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>⅔ W.</td>
<td></td>
</tr>
<tr>
<td>Height of whorl to diameter</td>
<td>A little over ½ D</td>
<td>¾ D</td>
<td>¾ D.</td>
</tr>
<tr>
<td>Width of umbilicus to diameter</td>
<td>U=½ D</td>
<td>U=½ D</td>
<td>U=½ D.</td>
</tr>
<tr>
<td>Indentation of last whorl by preceding.</td>
<td>Indented more</td>
<td>Nearly ¾</td>
<td>More than ¾.</td>
</tr>
<tr>
<td>Constrictions to revolution</td>
<td>4 in American</td>
<td>4 to 5 feeble</td>
<td>4 or more faint</td>
</tr>
<tr>
<td></td>
<td>specimens.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septa to revolution</td>
<td>19-20</td>
<td>20</td>
<td>18.</td>
</tr>
<tr>
<td>Spiral striae</td>
<td>(Fine in American</td>
<td>Strong and sharp.</td>
<td>Very fine.</td>
</tr>
<tr>
<td></td>
<td>specimens.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sinuous.</td>
</tr>
</tbody>
</table>

Not enough specimens have been studied to show that these characters are really constant; that they are not constant is shown by the fact that
McCoy grouped all three under *G. sphericus*, and de Koninck united *G. crenistria* with *G. striatus*.

Occurrence.—*Goniatites crenistria* is common in the upper part of the Lower Carboniferous in Great Britain, Belgium, and Germany. It has been described under the name of *Glyphioceras incisum* Hyatt from the St. Louis–Chester stage, of Texas (see Pl. X, figs. 12–16) and Arkansas, associated with *Goniatites striatus* (=*Glyphioceras cumminsi* Hyatt) in the Bend formation of Texas, and the Spring Creek limestone, so-called Fayetteville shale, of Arkansas.

The specimens figured on Pl. XIV; Pl. XV; Pl. XVI, figs. 1a–j; and Pl. XXVI, figs. 1–3, came from Moorefield, Arkansas, from calcareous nodules in shales. They were associated with an undoubted St. Louis fauna. The specimen figured on Pl. XXVI, fig. 5, came from the same formation, near Boles, Ark.

On account of the great interest and importance of this species, there is given below the complete ontogeny of the American *Goniatites crenistria* Phillips, var. *incisa* Hyatt, based on specimens from the St. Louis stage of Moorefield, Ark., associated with an undoubted St. Louis fauna. The development of this species was first published by the writer in a paper in the Proceedings of the California Academy of Sciences,⁴ from which paper the following description with some modifications is taken:

Larval Stages.

In order to obtain the larval stages of *Goniatites crenistria*, a number of adults were selected, so as to make sure of the identity, and the outer coils were broken off until the desired size was obtained. This necessitated the destruction of several specimens, but was well worth while in view of reliability of the results. The specimens were studied in three different mountings, dry on cardboard, in a drop of water on cardboard, and in water in a watch glass over a strong condensing lens. In the first way the surface markings are seen best, in the second the sutures and form, in the third the internal structure when the specimen is translucent. The nomenclature used is that of Hyatt, published in Phylogeny of an Acquired Characteristic.

Phylembryonic.—The protoconch represents the first shell secreted by the shell gland, and must have been formed while the animal was in the egg. It is quite possible that some of the chambers were formed before the egg was hatched, but this can not be determined on fossils. The protoconch is taken for convenience to represent the phylembryonic stage of growth, the end of the embryonic, when the class or phylum can be determined and the animal is already a cephalopod. In shape

the protoconch is a smooth, rather elongate, bobbin-shaped, oval body, of which the upper part projects forward in a lap, where the first chamber was joined to it. The protoconch was not the whole of the embryo chamber, for a part of the spiral tube must have furnished a lodging for the embryo; but after the formation of the first air chamber it is no longer possible to determine how long the primitive body chamber was. The protoconch corresponds to the primitive nautilian shell from which the ammonoids descended, but the parallelism is not exact, for the initial chamber of the nautiloids is not calcareous, while acceleration of development has pushed back to the embryo the calcareous shell of the ammonoids.

In the protoconch is seen the beginning of the syphon, or syphonal vacuum, a pear-shaped knob, projecting a short distance into the embryonic shell. It must have been present in the embryo, for it is older than the first suture, but its function is unknown. In some specimens what seemed to be a tube could be seen attached to the vacuum; this is probably the prosiphon described by Munier-Chalmas, but no specimens sufficiently definite to figure could be obtained.

On Pl. XIV, figs. 1 and 2, is shown the protoconch from which all the chambers have been broken off.

\[
\begin{array}{ll}
\text{Dimensions.} & \text{Millimeter.} \\
\text{Diameter} & 0.46 \\
\text{Height of whorl at attachment of first chamber} & 0.24 \\
\text{Height of first chamber from protoconch} & 0.17 \\
\text{Width} & 0.08 \\
\text{Involution} & 0.07 \\
\end{array}
\]

The protoconch is constant in size and dimensions, for several specimens were obtained free from the air chambers. Also a number of others were broken back almost to the protoconch, and the dimensions agreed, as nearly as could be determined.

On Pl. XIV, figs. 3, 4, and 5, is shown the protoconch of a Goniatites from the Carboniferous of Scott County, Ark., 2 N., 29 W., sec. 36, near the center. This species was compared by the writer\(^b\) to G. spharicus Martin, and said to be identical with the species from Moorefield. But although the adults are nearly alike, the protoconchs are quite unlike, as may be seen by a comparison of the two figures.

\[
\begin{array}{ll}
\text{Dimensions of the Scott County form.} & \text{Millimeter.} \\
\text{Diameter} & 0.53 \\
\text{Height of whorl at attachment to the protoconch} & 0.26 \\
\text{Height of whorl from the protoconch} & 0.18 \\
\text{Width} & 0.08 \\
\text{Involution} & 0.07 \\
\end{array}
\]

These figures show it to be larger and proportionally broader than the typical G. crenistria. If the species are identical, then this is an unusual variation.

Ammonionic.—As soon as the first air chamber is formed the animal has left the embryonic and begun the larval stage, and then takes rank with the chambered nautiloids. The suture at this stage consists of a very broad ventral saddle, with a pair of narrow, lateral lobes. On Pl. XIV, fig. 1, is shown this suture; fig. 6

\(^a\)The figures here referred to are those of this monograph.

shows this, and also the second chamber wall; figs. 9 and 10 show the ananepionic suture with half a coil attached. Pl. XVI, fig. 1, shows the initial suture along with the later ones. While this stage can not be compared to any particular genus, it corresponds to some nautilian form of the Silurian. The ananepionic siphon is about halfway between the dorsum and the venter; in this character, too, agreeing with the nautiloids. Where the siphon passes through the partition the wall is bent backward in a cone and has a siphonal collar around the tube. The surface is still smooth, no ornamentation of any sort ever having been seen on early stages of ammonoids.

Metanepionic.—With the second larval substage the shell becomes a true ammonoid. This begins with the second suture, which takes on the ventral lobe of the goniatites. The shell is smooth, as before, and the whorl changes little in shape, being still low, broad, and little embracing. The sutures and shape correspond exactly to *Anarcestes*, the primitive goniatite and radicle of the ammonoids. *Anarcestes* was named but not characterized by Mojsisovics, and afterwards defined by Hyatt as containing forms with smooth, broad, and low whorls, with semilunar cross section, deep umbilicus, and rather broad abdomen. *Goniatites subnautilinus* Schlotheim, of the Middle Devonian, was chosen as type of the genus, but most of the species occur in the Lower Devonian, in the Hercynian beds, which were formerly assigned to the Upper Silurian.

Goniatites crenistria shows the *Anarcestes* stage at the second and third sutures, and resembles closely *A. laticepsatus* Beyrich of the Lower Devonian. On Pl. XIV, fig. 6, is seen the transition from the ama- to the meta-nepionic; figs. 9 and 10 show the transition from ananepionic (first suture) to metanepionic (second and third sutures); figs. 11 and 12 show the *Anarcestes* stage at the first and second sutures visible on the whorl. The metanepionic sutures, seen in projection on Pl. XVI, figs. 1b and c, consist of a deep, rounded, ventral lobe, and a pair of broad, shallow, lateral lobes. When the animal has progressed thus far in its development it is a true goniatite, and the siphon has already turned to the outside of the whorl, or abdomen.

Paranepionic.—When the broad lateral lobes become indented with a pair of lateral saddles, the sutures, the narrow umbilicus, and the broad, low whorl all correspond to *Paradoxoceras* Hyatt, of the Middle and Upper Devonian. *G. crenistria* reaches this stage at the fourth suture, at a diameter of about 0.68 mm., one-third of a whorl, and continues in it for the fourth, fifth, and sixth sutures, up to a diameter of 0.80 mm., and five-eighths of a whorl. Pl. XIV, figs. 9 and 10, shows the form at the *Paradoxoceras* stage, at one-half a whorl, with the following dimensions:

<table>
<thead>
<tr>
<th>Millimeter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
</tr>
<tr>
<td>Height last coil</td>
</tr>
<tr>
<td>Height last coil from the protococh</td>
</tr>
<tr>
<td>Width of last whorl</td>
</tr>
<tr>
<td>Involution</td>
</tr>
<tr>
<td>Width of umbilicus</td>
</tr>
</tbody>
</table>

GONIATITES.

On Pl. XIV, figs. 11 and 12, the *Paradoxeras* stage shows at the fourth, fifth, and sixth sutures.

Notic:—When the ammonoid in its growth no longer shows the characters of its distinct ancestors, but has already taken on those of its own family, it may be said to have left the larval stage proper and to have begun its youth. The anamorphic stage is then the beginning of the adolescent period. *G. crassistriata* at the seventh suture, three-fourths of a whorl, and diameter of 0.85 mm., changes its form markedly: the two pairs of lateral lobes become more pronounced, and the ventral lobe becomes smaller in proportion; the coil leaves its close spiral and shows decided eggression, the umbilicus becomes wider, while the chamber becomes actually narrower than in the *Paradoxeras* stage, as seen from these figures: Width of chamber at diameter 0.74 mm. is 0.77 mm., at diameter 0.92 mm. it is 0.69 mm. The involution also becomes less. At diameter 0.90 mm. and end of the first whorl a decided constriction, marking a temporary mouth of the shell, makes its appearance. This stage corresponds to the Upper Devonian and Carboniferous genus *Prionoceras* Hyatt, of which *P. divisum* Muenster, of the Upper Devonian, and *P. bulboidium* de Koninck, of the Lower Carboniferous, are the types. These species have broad, low, rather evolute whorls, with wide umbilici and smooth surfaces, ornamented only with periodic constrictions. The external sutures consist of an undivided, pointed, ventral lobe, one pair of angular lateral lobes, and a second pair of rounded lobes on the umbilical border. The external saddles are angular and the lateral saddles rounded and broad. If the genus *Prionoceras* is dropped, as now seems likely, it will be necessary to give some other name to this stage of growth. The beginning of the *Prionoceras* stage is shown on Pl. XIV, figs. 11 and 12, in the widening of the umbilicus, eggression of the spiral, and narrowing of the chamber.

Dimensions of the specimen.

<table>
<thead>
<tr>
<th>Description</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>0.92</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>0.33</td>
</tr>
<tr>
<td>Height of last whorl from preceding</td>
<td>0.23</td>
</tr>
<tr>
<td>Width of last whorl</td>
<td>0.09</td>
</tr>
<tr>
<td>Involution</td>
<td>0.10</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>0.30</td>
</tr>
</tbody>
</table>

This stage begins at 0.85 mm. diameter, three-fourths of a whorl from the protoconch, and lasts with little change except increase in size for two revolutions up to a diameter of 2.25 mm., when the transition to *Goniatis* begins.

Plate XV, figs. 1 and 2, shows a continuation of the *Prionoceras* stage, at 1½ whorls.

Dimensions.

<table>
<thead>
<tr>
<th>Description</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>1.29</td>
</tr>
<tr>
<td>Height of last coil</td>
<td>0.45</td>
</tr>
<tr>
<td>Height of last coil from preceding</td>
<td>0.29</td>
</tr>
<tr>
<td>Width of last coil</td>
<td>0.35</td>
</tr>
<tr>
<td>Involution</td>
<td>0.15</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>0.50</td>
</tr>
</tbody>
</table>

On this specimen are seen two constrictions about two-thirds of a revolution apart, thus making the resemblance to *Prionoceras* very striking. At this stage are first seen the cross strié of growth. A continuation of the same generic stage is shown on Pl. XV, figs. 3 and 4, at 1\(\frac{1}{2}\) whorls.

Dimensions.

<table>
<thead>
<tr>
<th></th>
<th>Millimeters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>1.38</td>
</tr>
<tr>
<td>Height of last coil</td>
<td>0.52</td>
</tr>
<tr>
<td>Height of last whorl from preceding</td>
<td>0.31</td>
</tr>
<tr>
<td>Width of last whorl</td>
<td>1.02</td>
</tr>
<tr>
<td>Involution</td>
<td>0.21</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>0.51</td>
</tr>
</tbody>
</table>

The relative dimensions are nearly the same as at diameters 0.92 mm. and 1.29 mm., but the sutures differ slightly, the ventral lobe being slightly blunted, as shown on Pl. XVI, fig. 1. On this specimen only one constriction was visible at diameter of 0.85 mm.

On Pl. XV, figs. 5 and 6 show a larger specimen still in the *Prionoceras* stage, at 2\(\frac{1}{2}\) whorls.

Dimensions.

<table>
<thead>
<tr>
<th></th>
<th>Millimeters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>1.64</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>0.60</td>
</tr>
<tr>
<td>Height of last whorl from the preceding</td>
<td>0.40</td>
</tr>
<tr>
<td>Width of last whorl</td>
<td>1.38</td>
</tr>
<tr>
<td>Involution</td>
<td>0.20</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>0.54</td>
</tr>
</tbody>
</table>

No constrictions were visible on this specimen; that one which occurs at end of the first whorl being concealed by the outer coil. The relative dimensions are nearly the same as on the preceding specimens, except that the last whorl is proportionally broader and the umbilicus narrower. The sutures are the same as on the last specimen. The end of the *Prionoceras* stage is shown on Pl. XV, figs. 7 and 8, at 2\(\frac{3}{4}\) of a whorl.

Dimensions.

<table>
<thead>
<tr>
<th></th>
<th>Millimeters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>2.25</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>0.87</td>
</tr>
<tr>
<td>Height of last whorl from the preceding</td>
<td>0.50</td>
</tr>
<tr>
<td>Width of last whorl</td>
<td>1.82</td>
</tr>
<tr>
<td>Involution</td>
<td>0.37</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>0.58</td>
</tr>
</tbody>
</table>

No constrictions were visible on this specimen, the earlier ones being concealed by the outer whorl. The figures show that the relative dimensions remain nearly as before, but the umbilicus becomes considerably narrower. The sutures are like those of the smaller specimens, but on the last half whorl the ventral lobe becomes very much flattened, and at diameter of 2.2 mm. becomes slightly indented by the beginning of a ventral saddle, thus showing a transition to *Goniadites* and the end of the adolescent stage. No youthful stages larger than this were suc-
cessfully broken out in condition to figure, but the imperfect ones obtained showed a gradual narrowing of the umbilicus and increase in height of the whorl and involution.

ADULT STAGE.

The form of the adult *G. crenulata* has already been sufficiently described in this paper and in Hyatt's monograph. The sutures changed in increasing depth of the ventral sinus and sharpening of the lateral lobes, as shown on Pl. XVI, fig. 1, taken from a specimen of diameter of 15 mm. The early adult sutures have been figured by Hyatt, and the figures are reproduced in this paper.

Pl. XV, fig. 9, shows a small specimen in the early adult stage; it agrees in all essentials with those of larger growth, only the ventral saddle is shorter and the lateral saddles more rounded.

Table of stages of growth.

<table>
<thead>
<tr>
<th></th>
<th>Protoconch</th>
<th>Protoconch and two chambers</th>
<th>one-half whorl, Protoconoceras to Paradoxoceras</th>
<th>First whorl, Paradoxoceras to Prionoceras, 14 whorls</th>
<th>Prionoceras, 15 whorls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>mm.</td>
<td>mm.</td>
<td>mm.</td>
<td>mm.</td>
<td>mm.</td>
</tr>
<tr>
<td></td>
<td>0.46 = 1.00</td>
<td>0.61 = 1.00</td>
<td>0.74 = 1.00</td>
<td>0.92 = 1.00</td>
<td>1.29 = 1.00</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>.24 = .52</td>
<td>.31 = .50</td>
<td>.38 = .52</td>
<td>.33 = .35</td>
<td>.45 = .34</td>
</tr>
<tr>
<td>Height of last whorl from the preceding</td>
<td>.17 = .36</td>
<td>.15 = .24</td>
<td>.13 = .17</td>
<td>.23 = .25</td>
<td>.29 = .22</td>
</tr>
<tr>
<td>Width of last whorl</td>
<td>.66 = 1.56</td>
<td>.66 = 1.08</td>
<td>.74 = 1.04</td>
<td>.69 = .75</td>
<td>.95 = .73</td>
</tr>
<tr>
<td>Involution</td>
<td>.07 = .15</td>
<td>.16 = .26</td>
<td>.26 = .35</td>
<td>.10 = .10</td>
<td>.15 = .11</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>.00 = .08</td>
<td>.28 = .30</td>
<td>.50 = .38</td>
<td>.51 = .37</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Prionoceras, 21 whorls</th>
<th>Prionoceras, 21 whorls</th>
<th>Prionoceras to Goniatites, 21 whorls</th>
<th>Goniatites, Aneoplonic, End of neanic stage</th>
<th>Goniatites, Silurian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>mm.</td>
<td>mm.</td>
<td>mm.</td>
<td>mm.</td>
<td>mm.</td>
</tr>
<tr>
<td></td>
<td>1.64 = 1.00</td>
<td>2.25 = 1.00</td>
<td>2.60 = 1.00</td>
<td>3.00 = 1.00</td>
<td>6.00 = 1.00</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>.60 = .36</td>
<td>.87 = .38</td>
<td>1.24 = .47</td>
<td>1.45 = .48</td>
<td>3.50 = .58</td>
</tr>
<tr>
<td>Height of last whorl from the preceding</td>
<td>.40 = .23</td>
<td>.50 = .22</td>
<td>.76 = .29</td>
<td>.85 = .27</td>
<td>1.80 = .30</td>
</tr>
<tr>
<td>Width of last whorl</td>
<td>1.38 = .84</td>
<td>1.82 = .80</td>
<td>2.32 = .88</td>
<td>2.82 = .94</td>
<td>6.00 = 1.00</td>
</tr>
<tr>
<td>Involution</td>
<td>.29 = .12</td>
<td>.37 = .16</td>
<td>.48 = .18</td>
<td>.62 = .20</td>
<td>1.65 = .27</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>.54 = .32</td>
<td>.58 = .25</td>
<td>.61 = .23</td>
<td>.66 = .22</td>
<td>.90 = .15</td>
</tr>
</tbody>
</table>

SUMMARY.

The ontogeny of *Goniatites* is of interest not only for its own sake, but also because it is the most important genus of the largest family of ammonoids of the Carboniferous, and because this family gave rise to a large part of the ammonites of the Trias. *Goniatites* in its ontogeny goes through the following stages: phylembryonic, protoconch, representing the primitive cephalopod; ameponic; Silurian

nautiloid; metaneptic, _Amurestes_ of Lower Devonian; paraneptic, _Parodoceras_ of Middle Devonian; neanic, _Prionoceras_ of Upper Devonian and Carboniferous, showing gradual transition through ana-, meta-, and paraneptic, and a gradual change from _Prionoceras_ to _Goniatites_ in the late adolescent and early adult stages. _Prionoceras_ or some similar form seems to have been the family radicle, and _Gonioides_ is a side branch, since _Goniatites_ does not go through any stage corresponding to the latter genus. _Gastriceras_ comes from _Prionoceras_ (through _Glyphioceras_) by somewhat narrowing the whorl and division of the ventral lobe. _Glyphioceras_ and _Goniatites_ come directly from _Prionoceras_ by narrowing the umbilicus so as to conceal most of the inner whorls, and by division of the ventral lobe.

The division of the family _Glyphioceratidae_ into _Agnidites, Prionoceras, Goniodoboceras, Dimorphoceras, Pericyclus, Goniatites, Glyphioceras, Münsteroceras, Gastriceras, Paralegoceras_, and _Schistoceras_ is quite proper for phylogenetic reasons.

According to Steinmann the Ceratitidae of the Trias are descended from _Gastriceras_, and the Tropitidae from _Pericyclus_, but neither of these groups goes through stages of growth corresponding to these genera. _Tropites_ does, however, go through a _Prionoceras_ stage, and later it resembles closely _Gastriceras_, but it already has the _Tropites_ keel before the ventral lobe is divided. But it is quite likely that some of the genera assigned to the Tropitidae do descend directly from other members of the _Glyphioceratidae_.

All specimens of _Goniatites crenista_ figured in this paper, except those on Pl. X, figs. 12-16, are deposited in the geologic collection of Leland Stanford Junior University, California, and came from the St. Louis-Chester stage (Fayetteville shale), of Moorefield, Ark. Those figured on Pl. X, figs. 12-16, are from the Lower Carboniferous, St. Louis-Chester, Bend formation, near Richland Springs, San Saba County, Tex.

Goniatites greencastlensis Miller and Gurley.

Pl. XVII, figs. 12-14.

This species has been referred by E. Haug to _Goniatites_ s. str., on the supposition that the pointed undivided abdominal lobe was merely the lobe of the internal part of the next outer coil pressed on the shell. Through the kindness of Dr. Stuart Weller the writer was allowed to examine the type of this species in the paleontologic collection, Walker Museum, University of Chicago, and found the facts to be as Haug suspected. This specimen is, therefore, a member of _Goniatites_ s. str., and not of _Prionoceras_, as one would think from the drawing published.

Occurrence.—Lower Carboniferous, St. Louis stage, Greencastle, Ind.
GONIATITES.

GONIATITES KENTUCKIENSIS Miller.

Pl. XVII, fig. 1.

This species is probably identical with *G. striatus* Sowerby, and thus with *Glyphioceras cumminsi* Hyatt, for the globose rather flattened form, the size of the umbilicus, the septa and the spiral ridges all agree with that species. But Miller does not describe nor figure any constrictions on the shell, although it probably has them in the earlier stages.

Occurrence.—Lower Carboniferous, St. Louis stage, Crab Orchard, Ky. The type is deposited in the paleontologic collection, Walker Museum, University of Chicago.

GONIATITES LUNATUS Miller and Gurley.

Pl. VI, figs. 2–5.

Shell globose, volutions enlarging rapidly, and becoming more broadly rounded with increasing size. Cross section of the whorl semilunular. Greatest breadth of whorl about one-fourth larger than the height, and situated at a point about one-fifth of the height of the whorl above the umbilicus. Whorls deeply embracing, the last whorl being indented to one-half of its height by the preceding one. Umbilicus very narrow, being not more than one-eighth of the total diameter. Surface of the shell smooth, except for fine cross imbricating striae of growth. No constrictions have been observed.

Septa consisting of a narrow divided ventral lobe and broad, shallow, bluntly pointed laterals. External saddles rather narrow, lateral saddles broad and shallow. Dorsal septa unknown.

In this species is seen the survival of a type that prevailed in the St. Louis-Chester stage of the Lower Carboniferous, but it has apparently lost the constrictions and tendency to surface ornamentation characteristic of the group at that time.

Occurrence.—Coal Measures (Middle?), Elkhorn Creek, Kentucky.
Deposited in the paleontologic collection in Walker Museum, University of Chicago. The writer's thanks are due Dr. Stuart Weller for the use of the drawings of this species, from Bull. No. 11, Illinois State Mus. Nat. Hist., Pl. V, figs. 2–5.

Goniatites newsomi Smith, sp. nov.

Pl. XVII, figs. 2–5.

Whorl depressed, with broadly rounded abdomen, and angular umbilical shoulders. Whorl a little wider than high, greatest breadth a little above the middle, indented to half its height by the preceding whorl. Involute, umbilicus rather wide, about one-fourth of diameter of shell; narrower in young. Several sharply incised constrictions to a revolution showing on both shell and cast. These bend sharply forward on the abdomen, making a broad saddle, with a narrower lobe. Shell ornamented with strong spiral striae or ridges, with broader interspaces coarser than on *G. striatus*. There are also fine cross striae of growth, giving a slightly reticulated aspect to the shell and the cast. These show on both shell and cast. The ornamentation resembles *G. striatus*, but is coarser, and the form is somewhat more strongly compressed than that species, from which it also differs in the form of the constrictions and in its wider umbilicus. The nearest relative of this species is *G. subcircularis* Miller, but *G. newsomi* is much broader than *G. subcircularis*, has coarser spiral ridges, and wider umbilicus. The septa are more larval in character than those of *G. striatus*. Named in honor of the collector, J. F. Newsom. Deposited in the geologic collection of Leland Stanford Junior University, California.

Occurrence.—Lower Carboniferous, St. Louis stage, so-called Fayetteville shale, Batesville, Independence County, Ark.

Goniatites sphericus Martin.

1842–4. _Ammonites sphaericus_, L. G. de Koninck, Deser. anim. foss., p. 570, Pl. XLIX, figs. 6; Pl. L, figs. 9, 10.
1875. _Goniatites sphaericus_, W. H. Bailey, Charact. Fossils, p. 117, Pl. XL, figs. 9a, b.
1901. _Glyphioceras sphaericum_, F. Frech, Ueber devonische Ammoniten, p. 84, fig. 37 b and c.

This species was somewhat doubtfully identified by Weller from the so-called Batesville sandstone, St. Louis-Chester stage, Lower Carboniferous, of Batesville, Ark. Since the same group has furnished in that region _G. crenistria_ and _G. striatus_ the occurrence of _G. sphaericus_ is not at all unlikely, but better specimens must be found before the identification will be certain. The European form was the one chosen by Hyatt as the type of his genus _Glyphioceras._

For the distinctions between _Goniatites crenistria, G. sphaericus,_ and _G. striatus_ see the descriptions of _G. crenistria_ and _G. striatus_, where the relations of all three are fully discussed and the comparative dimensions given. The three species have usually been confused, and indeed they are separated by very slight differences, which seem, however, to be fairly constant. But it is by no means impossible, nor even unlikely, that at least _G. crenistria_ and _G. striatus_ may be the same species, and both possibly only a variety of _G. sphaericus._

Occurrence.—Lower Carboniferous, St. Louis-Chester stage, Batesville sandstone, Batesville, Ark.
Goniatites striatus Sowerby.

Pl. X, figs. 1–11; Pl. XXVI, figs. 6–13.

Pl. XLIX, figs. 7, a, b, c; d; Pl. L, figs. 7, a, b, c.
Vol. I, Pt. II, p. 547, Pl. I, figs. 17, a, b, c.
1876. Goniatites sphaericus, F. Roemer, Lethaea Geognostica, Pt. II, Lethaea Palaeozoica, Pl. XLVI, figs. 11, a, b, c.
1880. Goniatites striatus (pars), L. G. de Koninck, Faune calc. carbon. de la Belgique,
Vol. 1, p. 253, Pl. XLVI, figs. 1, la, 2, 2a; Pl. XLVII, figs. 1, la, 2, 2a.
Pl. XLVII, figs. 33–43.
p. 166, fig. 78.
1899. Glyphioceras striatum, F. Frech, Die Steinkohlenformation, Pl. XLVI, 1,
figs. 1–2.

Shell globose, involute, with slightly flattened sides, and broadly rounded abdomen. Height of whorl about the same as the breadth, and a little more than one-half of the diameter. Whorl indented more than half its height by the preceding whorl. Umbilicus narrow, about one-eighth of the diameter, broader than in G. crenistria, and narrower than in G. sphaericus. Three to four distinct constrictions to a revolution; these form a broad, shallow saddle on the abdomen, showing on both shell and cast.

Surface ornamented with fine, sharp, spiral striae, with slightly broader interspaces, and fine cross striae, giving a reticulated aspect to the shell. The cross striae are finely crenulated, as in G. crenistria, but the spiral ridges much stronger. G. striatus is most nearly allied to G. crenistria, from which it differs in being slightly more compressed, in its coarser spiral stria and less distinct cross stria, and somewhat wider umbilicus. From G. sphaericus this species differs in its more distinct spiral and cross stria, the slight reticulation of the shell, the somewhat narrower umbilicus, and the greater lateral compression.
It will be seen from the foregoing description that *G. striatus* is directly intermediate in character between *G. crenistria* and *G. sphericus*, and a large suite of specimens of all three would probably show transitions from one to the other.

There seem to be among the American specimens two rather well-marked varieties of this species, one with the spiral lines very sharp and the cross striae very weak; this one occurs in the St. Louis-Chester stage of Batesville, Ark.; the other has the spiral lines and cross striae of about equal strength, and very sharply defined crenulations; this occurs in the St. Louis-Chester stage, the Bend formation of central Texas (*Glyphioceras cumminsi* Hyatt, Pl. X, figs. 1–11), although it seems to the writer that Hyatt has included under this designation specimens of both *G. striatus* and *G. crenistria*. In youth these varieties can not be distinguished from each other, nor from *G. crenistria*, which is associated with them.

Goniatites kentuckiensis Miller is probably identical with this species, but until a specimen is found showing constrictions it is left under its present name.

Occurrence.—*Goniatites striatus* is characteristic of the upper part of the Lower Carboniferous in Great Britain, Belgium, and Germany, and is considered a typical zone fossil in that region. We may therefore extend the term zone of *Goniatites striatus* to the same horizon in America, the St. Louis-Chester stage, in which this species has been found near Batesville, Ark. (Pl. XXVI, figs. 6–13), and in the Bend formation near Lampasas, Tex. (Pl. X, figs. 1–11). The specimens figured on Pl. XXVI, figs. 6–13, in this paper are deposited in the geologic collection of Leland Stanford Junior University, and came from the St. Louis-Chester beds (Fayetteville shale) of Batesville, Ark. Those figures on Pl. X, figs. 1–11, came from the Bend formation near Lampasas, Tex., and are deposited in the Texas State Museum.

Goniatites subcircularis Miller.

Pl. XXVI, figs. 14–18.

This species resembles somewhat *G. striatus*, but has wider umbilicus, coarser spiral striae, more compressed whorl, and lacks entirely the
crenulations seen on most other species of this group. Constrictions deeply incised, four to a revolution, bending sharply forward on the abdomen.

Occurrence.—Lower Carboniferous, St. Louis stage, Crab Orchard, Ky., and the same horizon in the so-called Fayetteville shale of Batesville, Ark. The figured specimens came from the Arkansas locality, and are deposited in the geologic collection of Leland Stanford Junior University, California.

Genus Gastrioceras Hyatt.

This genus was originally established by Hyatt\(^a\) to include evolute species with open umbilicus, trapezoidal or semilunular cross section, and usually ribs or tubercles on the sides; the species included by Hyatt in this genus all have prominent siphonal saddles, first lateral saddle broadly rounded, second lateral saddle broad, but inclined to be pointed; the siphonal lobes are long, narrow, and pointed, and the lateral lobes broad and pointed. In all the species cited by Hyatt\(^b\) as belonging to *Gastrioceras*, there is but a single pair of lateral lobes visible—that is, on the sides of the shell; and Hyatt\(^c\) limits *Gastrioceras* to forms with a single pair of lateral lobes and with the second pair on the umbilical shoulders. Hyatt\(^d\) refers *G. russiense* Tzwetaev to his genus *Paralegoceras*, because that species has the second pair of lateral lobes on the sides of the shell and not on the umbilical shoulders. But *Gastrioceras russiense* has just the same number of lobes as all other known species of *Gastrioceras*, namely, nine in all, and lacks the lobe on the umbilical border, which is characteristic of *Paralegoceras*. Dr. K. von Zittel\(^e\) confines *Gastrioceras* to forms with a single pair of lateral lobes. But the relations of *Gastrioceras*, *Glyphioceras*, *Goniatites*, and *Paralegoceras* have been best worked out by Karpinsky, who shows that there is no marked distinction between *Goniatites* and *Gastrioceras*; that both have the same number of lobes and saddles—nine of each; that the second pair of lateral lobes may be on the umbilical shoulders or on the sides of the shell, thus differing from *Paralegoceras*, in which the third pair of lateral lobes is on the umbilical shoulders. *Gastrioceras* usually has a trapezoidal cross section and umbilical ribs; but some species lack the

\(^b\) Ibid.
\(^d\) Ibid.
\(^e\) Grundziige der Palaeont., p. 399.
ribs, as *G. globulosum* Meek and Wortelen, while some species of *Glyphioceras* have umbilical ribs and, in their youth, also the elliptical cross section, as *Glyphioceras diadema* Goldfuss. But the two extremes are widely separated from each other, as *Gastrioceras josseni* Verneuil and *Gonioceras sphacelus* Martin.

This genus has been looked upon by Steinmann as the ancestor of the trachyostracan families of the Trias, the Ceratitidae and the Tropitidae. Dr. K. von Zittel agrees with this opinion as to the origin of the Tropitidae, but thinks the Ceratitidae developed out of the Prolecanitidae, which is in agreement with the writer's studies on the development of Ceratites of the Trias.

Gastrioceras branneri Smith.

Pl. XI, figs. 8–13.

The adult shell is discoidal, with low, narrow whorls of semilunar cross section; the adult whorl is very evolute, embracing not more than a third of the preceding one, and the increase in height and breadth is extremely slow. The young whorls are proportionally broader and more involute, so that the umbilicus of the younger part of the shell is deeper, but widens rapidly with age, as the involution decreases. *G. branneri* is the most evolute species of *Gastrioceras* known in the Carboniferous, and approaches the narrow evolute Permian type, described by Gemmellaro from Sicily; but the Sicilian form still retains the strong constrictions, and has also acquired the spiral striae that are characteristic of Permian *Gastrioceras*.

Dimensions.

<table>
<thead>
<tr>
<th></th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>39.5</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>10.5</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>19.0</td>
</tr>
<tr>
<td>Breadth</td>
<td>15.0</td>
</tr>
<tr>
<td>Height of last whorl from top of preceding</td>
<td>8.0</td>
</tr>
</tbody>
</table>

The specimen shows nine whorls at the diameter of 39.5 mm.

Sutures.—The sutures consists of three external lobes and as many saddles. The siphonal lobes are long, narrow, and pointed; the first lateral broadly pointed, and on the umbilical shoulder is another shallow lobe, broad and pointed. The siphonal saddle is narrow, with the usual indentation at the end; the first lateral saddle is broadly rounded and deep, the second lateral saddle shallow and inclined to be pointed. The inner lobes
are three in number, a long, narrow, pointed antasiphonal lobe, and a pair of shorter, pointed lateral lobes: the four internal saddles are rounded. The figures on Pl. XI, figs. 12 and 13, show the sutures to be characteristic of *Gastrioceras*; but the second lateral lobe, while on the umbilical shoulders, is plainly visible from the outside. Thus the species might be referred to the genus *Paralegoceras* of Hyatt; but it has only nine lobes and nine saddles, while *Paralegoceras* has eleven of each.

Surface characters.—The shell is preserved on only a small portion of the specimen, but the cast shows the generic and specific characters quite as well. Obscure and somewhat doubtful constrictions were observed, but the preservation is such that their interval could not be ascertained. The umbilical shoulders are marked with rather weak nodes or ribs, which on the outer whorls reach up nearly to the abdominal shoulders; on the young shell they are relatively much stronger.

Affinities.—*Gastrioceras branneri* belongs to the group of *G. listeri* Martin, *G. jossea* Verneuil, and *G. marianum*, all characterized by trapezoidal cross section, umbilical ribs, pointed lobes and rounded saddles, and evolute whorls. From the above-mentioned species *G. branneri* differs in the narrowness of its whorls, and wide, shallow umbilicus; it seems to depart further from the *Glyphioceras* stock than any other Carboniferous species of the genus *Gastrioceras*.

Occurrence.—*Gastrioceras branneri* was found along with *Pronorites cyclolobus* Phillips, var. *arkansascensis* Smith, and *Productus cestriensis* Meek and Worthen, in Arkansas, on Pilot Mountain, Carroll County, 3½ miles southwest of Valley Springs, in T. 17 N., R. 19 W., sec. 18, northeast corner, in Lower Carboniferous, Chester group (A10 of Prof. H. S. Williams’s section).

The type, for the use of which the writer is indebted to Prof. H. S. Williams, is the property of the U. S. Geological Survey (U. S. National Museum), locality number 1275.

Gastrioceras carbonarium von Buch.

Plate XI, figs. 1–4.

1899. *Glyphioceras suberatnum*, F. Frech, Die Steinkohlenformation, Pl. XLVI, B, figs. 3 and 5.

Form somewhat compressed laterally; whorls helmet-shaped, wider than high, highly arched, and indented to nearly one-half the height by the preceding whorl. Greatest breadth at the umbilical margin. Umbilicus wide and deep, inner area steep. In the adolescent stage the whorls are broad, low, and flattened, with angular sides exactly like those of *G. listeri*.

The sides are ornamented with strong tubercles, which on the young stages are like those of *G. listeri*, but at maturity form ribs that reach halfway up to the abdomen.

Three or four constrictions are seen on each revolution. Outer shell with fine cross striae of growth, visible on the cast. The ventral lobes are sharp and narrow, the lateral lobe narrower than is usual with *Gastrioceras*, and not tongue-shaped.

The inner whorls are flattened and angular, with much stronger tubercles than those on the mature shell.

E. Haug* has included not only this species, but also *G. coronatum*
Foord and Crick, in *G. listeri*, but these three differ in septa, in involution, and shape of the whorl, *G. listeri* being intermediate between the others, and no transitions from one to the other being known.

Occurrence.—*Gastrioceras carbonarium* is characteristic of the middle division of the Coal Measures in England, Belgium, and Germany. In America it has been found at the same horizon in western Arkansas—Scott County, near Boles—associated with *G. listeri*. The identification is not beyond question, on account of the nature of the preservation of the specimens. It is therefore referred with some doubt to *G. carbonarium*. Figured specimen deposited in the geologic collection of Leland Stanford Junior University.

Gastrioceras compressum Hyatt.

Pl. IX, figs. 1–3.

The following description is quoted from Hyatt’s paper:

The form of the whorl is helmet-shaped, and at the diameter of 109 mm. in a cast the greatest transverse diameter was 42 mm.; the distance in a straight line from umbilical shoulder to center of abdomen, 38-39 mm.; the abdomeno-dorsal diameter, 23 mm. The increase by growth in both diameters is slow and the umbilici consequently shallow. The involution covers more than two-thirds of next internal whorl at the diameter of 109 mm., and in another specimen at diameter of 68 mm. it is just two-thirds. The still younger whorls are numerous and visible from the sides at the centers of the umbilici, and doubtless the amount of involution is correspondingly less. Constrictions appear in the smaller specimen measured and in the younger stages of another flattened example.

The ventral lobe is divided by a large bottle-shaped siphonal saddle divided by a siphonal lobe at the extremity; the lateral branches of the ventral lobes are very long and acutely pointed, as are also the first lateral lobes, which are of the same length as these branches of the ventral. The first lateral saddles are hastate and acutely pointed, and second lateral saddles are, as is usual in this genus, subhastate. The inner outlines of these last are concave near the points, then suddenly convex internally where the lobe of the umbilical shoulder begins. These last-mentioned lobes are also acutely pointed, but much more abbreviated than the other two pairs. The shell is strongly striated, but it is not pilated or otherwise marked, except when constrictions occur.

Occurrence.—Lower Carboniferous, St. Louis-Chester stage, Bend formation, San Saba County, near Bend, Tex. The type is deposited in the U. S. National Museum.
GASTRIOCERAS. 87

Gastrioceras entogonum Gabb.

Plate X, figs. 17-19.

The following description is quoted from Hyatt's paper:

This species is similar to others of the genus in its open umbilici and the arcuate trapezoidal outline of the whorl in section. The cast is marked by deep constrictions, confined to the abdomen, and somewhat less than one-third of a volution apart, or about three and five-tenths to one volution. These bend forward on either side and then back, forming two crests and a median sinnus on the abdomen. The sides are divergent, narrow, and smooth. The abdomen is strongly furrowed and ridged on the shell, and these markings are repeated on the cast. The longitudinal ridges are crossed by strong lines and narrow laminae of growth, which are to a greater or less extent impressed upon the surface of the cast, as shown in fig. 51 [in Hyatt's paper]. The lines of growth and the constrictions are exactly parallel on the abdomen, and the apertures were probably similar in outline.

The shell was seen only in small fragments, but there is sufficient of these to show that it was not very thick, and ornamented by continuous ridges much sharper than those on the cast. These were crossed and slightly serrated by fine transverse lines, occurring as the edges of narrow laminae of growth. The sides are smooth except for the presence of the edges of those same laminae. But there is one patch near the line of involution having a ridge with the usual crenulations. The ridges on the venter cross the constriction of the cast below without any inflection, the constriction being caused entirely by the internal thickening of inner layer of the shell.

This species differs from Gast. listeri of Europe in the smoothness of the shell on the sides and the extent of the involution, which is here coextensive with the abdomen of the whorls, and also in the strong ridges on the abdomen.

The sutures were also visible on the specimen and are of the usual gastrioceran type.

Occurrence.—Lower Carboniferous, St. Louis-Chester stage, Bend formation, 5 miles west of Lampasas, Texas. A similar species, thought to be identical with G. entogonum, was found by the geological survey of Arkansas in the Lower Carboniferous, Fayetteville shale, near Boles, Ark. In both Arkansas and Texas this species was associated with Goniatites cuminsi of Hyatt, or Goniatites striatus, according to the writer.
CARBONIFEROUS AMMONOIDS OF AMERICA.

Gastrioceras excelsum Meek.

Pl. XVI, fig. 2; Pl. XXVIII; Pl. XXIX.

This is the largest known species of Carboniferous ammonoids. A specimen from Osage, Kans., now deposited in the United States National Museum, has a diameter of 11 inches, and is entirely septate, so that the full size, with the complete body chamber, must have been several inches more. Shell globose, with depressed helmet-shaped whorls, and abruptly rounded umbilical shoulders. Width of whorl nearly equal to the total diameter of the shell, and more than twice the height of the whorl. Each whorl indented to one-third of its height by the inner volution.

Surface apparently smooth except for obscure traces of nodes on the umbilical shoulder.

Umbilicus deep and wide, being more than one-third of the total diameter in width. Septa of the usual gastrioceran type, ventral lobes long, narrow, and pointed, divided by a broader siphonal saddle. Lateral lobes longer than the ventral, and very little wider. First and second lateral saddles broadly rounded. A third lateral lobe, short and funnel shaped, is seen below on the umbilical slope of the umbilical shoulder. This is not shown in the sketch on Pl. XXVIII, fig. 2, which stops at the umbilical shoulder, but can be seen on fig. 1, from a photograph of the shell. Internal septa unknown.

Occurrence.—A specimen doubtfully compared by Meek with this species was found at an unknown locality in the Upper Coal Measures of Kansas, and figured in geological survey of Illinois, Vol. II, p. 390, fig. 38.

This type was found in the Upper Coal Measures of eastern Kansas at Osage. This is the specimen now deposited in the United States National Museum. In the paleontologic collection of the Walker Museum, University of Chicago, is a specimen, No. 6226, from the Upper Coal Measures of Osage, Kans.; this is better preserved than the type, and has therefore been figured on Pls. XXVIII and XXIX. The writer's thanks are due Dr. Stuart Weller, of
the University of Chicago, for the opportunity of studying the specimen, and for the photographs of it. On Pl. XVI, figs. 2a and 2b, is figured a specimen from the Middle Coal Measures of Pope County, Ark., T. 10 N., R. 20 W., sec. 8, collected by the geological survey of Arkansas, and now deposited at Leland Stanford Junior University.

Gastrioceras globulosum Meek and Worthen.

Pl. VI, fig. 1; Pl. XXI, figs. 7–9.

This species has some slight resemblance to *Paralegoceras baylorense* of the Texas Permian, but the lobes of the latter are alone sufficient to separate the species, exceeding by one the number on the sides of *G. globulosum*. The Texas species also has the umbilicus much wider and more open, and is not so globose.

The angle of the umbilicus is 45°, which remains constant notwithstanding the fact that the shell grows more involute with age, being in its youth a comparatively open coil. In youth the whorls are flattened, but with age they become more rounded, until the shell reaches almost the form of *Goniatites sphericus* Martin. As many as six whorls are known.

The deeply marked constrictions, that are so common in the family of the Glyphioceratidae, are seen on the casts, about four to a whorl.

Sutures.—The sutures show nine lobes and nine saddles; the siphonal lobes are narrow and pointed, the first lateral lobe is broad, but pointed, and on the umbilical shoulder is a small, pointed "suspensive" lobe. There are three pointed, internal (concealed by the involution) lobes, of which the antisiphonal (dorsal) is the longer.

The siphonal saddle is rather deeply notched, long and narrow; the two lateral saddles are broad and rounded. The two internal saddles are rather pointed and long, as is the case with most species of this genus. The internal lobes and saddles have never been seen before in this species.
The septa are exactly like those figured by Meek and Worthen, so that no further description of them is necessary: they are typical of the genus *Gastrioceras*, as characterized by Hyatt, although as Karpinsky\(^a\) remarks, the sutures alone are not sufficient to separate the genera *Glyphioceras* and *Gastrioceras*, since a comparison of the sutures of *Gastrioceras jossae* Verneuil and *Glyphioceras diadema* Verneuil (not Goldfuss) shows the almost perfect similarity of the two.

The surface of the shell was unknown to Meek and Worthen, but some of the Arkansas specimens have the shell partially preserved. It is marked with fine, sharp, doubly arcuate, sickle-shaped striae or ribs, with the sinuses on the ventral portion pointing backward. The surface ornamentation resembles that of *Glyphioceras obtusum* Phillips,\(^b\) but the form is much more globose, and the lobes unlike those of Phillips's species.

Dimensions.—One of the fragments shows a diameter of over 2 inches; on this only the body whorl was seen, it being at least one coil in length.

<table>
<thead>
<tr>
<th>Dimensions of the largest figured specimen</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>36</td>
</tr>
<tr>
<td>Breadth</td>
<td>27</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>14</td>
</tr>
<tr>
<td>Height of last whorl from center of umbilicus</td>
<td>19</td>
</tr>
<tr>
<td>Height of last whorl from top of the inner one</td>
<td>8</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>9</td>
</tr>
</tbody>
</table>

These measurements show the adult shell to be very globose.

Occurrence.—Several specimens of this species were found in the Middle Coal Measures of Scott County, Ark., T. 1 N., R. 28 W., sec. 4, SE. \(\frac{1}{4}\) of SE. \(\frac{1}{4}\). This species is also found in the Cisco formation of the Texas Upper Coal Measures, and in the Upper Coal Measures of Springfield, Ill. The specimen figured on Pl. XXI, figs. 7–9, came from the Upper Coal Measures, Cisco formation, of Graham, Tex., and has been deposited by the writer in the U. S. National Museum.

\(a\) Ammoniten der Artinsk-Stufe, p. 46.

The following description is quoted from the paper by Miller and Gurley:

Species medium size, subglobose, volutions moderately enlarging, and periphery broadly rounded. One specimen exposes part of three volutions, leaving the impression that a complete shell contained not less than six volutions. A transverse of a volution is subcrescentiform, the horns being short and obtuse. The last volution incloses all the inner ones, but leaves a rather large open umbilicus. The air chambers are short and complicated. The outer shell is not preserved in our specimen.

The septa are gastrioceran in character, consisting of a pair of ventral lobes divided by a blunt siphonal saddle, a principal lateral lobe, and a broad, shallow, pointed, funnel-shaped auxiliary. The saddles are club-shaped, and the ventral and first lateral lobes mucronate.

This species certainly belongs in the same genus with *Gastrioceras kansasense* Miller and Gurley, of which the writer has satisfied himself by an examination of the types of the two. Haug referred this species to *Paralegoceras*, but in the drawing of the septa (the internal part was added to the original drawing from a sketch of the type by Dr. Stuart Weller) it is seen to lack the fourth external lobe that is characteristic of *Paralegoceras*, and to have the normal number of lobes, external and internal, characteristic of *Gastrioceras*.

Occurrence.—Upper Coal Measures, Montgomery County, Ill. Type specimen is deposited in the paleontologic collection, Walker Museum, University of Chicago.

Gastrioceras illinoiense Miller and Gurley.

Pl. XVII, figs. 6–8.

Shell small, subglobose; whorls slowly increasing in size, depressed helmet-shaped and deeply embracing, indented to half their height by the
preceding whorls. Breadth of whorl about two-thirds of the total diameter of the shell and nearly twice as great as the height of the whorl. Umbilicus wide, its width being more than a third of the total diameter of the shell. Surface of the shell smooth, not marked by ribs.

According to Miller and Gurley, this species differs from *G. illinoisense* in its larger umbilicus, more depressed whorls, less gibbous shape of the whorls, greater abruptness of the umbilical shoulders, and greater simplicity of the septa, which are decidedly mucronate in *G. illinoisense* and merely tongue-shaped in *G. kansasense*. Also in *G. kansasense* the auxiliary lobe is on the umbilical border, while on *G. illinoisense* it is on the umbilical slope, just below the shoulder. Both species belong to the group of *G. globulosum*, characterized by globose whorls and absence of umbilical nodes or ribs, thus differing from the species that have been considered typical of *Gastrioceras*. This seems to be a rather specialized group that has lost the nodes entirely, and retains the constrictions only in the young.

Occurrence.—Upper Coal Measures, Missourian stage, Kansas City, Mo. The type is in the paleontologic collection, Walker Museum, University of Chicago.

Gastrioceras kingi Hall and Whitfield.

Pl. IV, figs. 4–8.

Shell subglobose, the breadth of the whorls being about two thirds of the total diameter of the shell and about twice as great as the height of the whorl. Whorls with flattened broad venter, depressed helmet-shaped outline, abrupt angular umbilical shoulders, the umbilical border having an inclination of 45° with the axis of the shell. Umbilicus wide, being about one-half of the diameter of the shell. Whorls deeply embracing, each one covering the inner whorl to near the umbilical shoulder, and being indented by this to one-half its height.

Surface ornamented by obscure nodes on the umbilical shoulders, sometimes forming faint undulations across the abdomen. The whole surface is covered by fine lines of growth, the crowding together of which causes the undulations. Surface of the cast marked by constrictions, about two to a revolution.
Septa of the usual gastrioceran type; ventral lobes narrow and long, separated by a deeply notched siphonal saddle. Lateral lobe rather broad and funnel-shaped. External and lateral saddles broadly rounded. The second lateral lobe is not above the umbilicus. Body chamber at least two revolutions in length.

Occurrence.—In black shale of the Coal Measures, presumably the upper part, near Eberhardt Mill, White Pine, Nev. The type is deposited in the U. S. National Museum.

Gastrioceras listeri Martin

Pl. XIII, figs. 6–15.

1809. Conchylidithus Nautilites Ammonites (listeri), W. Martin, Petrif. Derb., Pl. XXXV, fig. 3, and p. 16.

1834-44. Ammonites listeri (pars), L. G. de Koninck, Deser. anim. foss., p. 577 (excluding figures).

1899. Glyphioceras listeri, F. Frech, Die Steinkohlenformation, Pl. XLVI, B, figs. 2 a–b.
The whorl is low, broad, with trapezoidal cross section, very evolute, broader than high; indented about one-half the height by the preceding whorl. Greatest breadth at the umbilical margin, about three-fourths the diameter: height of the whorl about two-sevenths the diameter and less than half the breadth. Umbilicus broad and deep, width about one-half the diameter. Strong umbilical tubercles, which are continued across the abdomen by fine undulations. About three constrictions to a revolution. Outer shell with fine cross striae, and obscure spiral striae on the inner whorls. Septa consisting of a pair of tongue-shaped narrow ventral lobes, and a somewhat shorter and broaden lateral lobe. On the umbilical shoulders is a small shallow "suspensive" lobe. The saddles are all broadly rounded.

This species has been united by many writers with *Gastrioceras carbonarium*, but is always broader and more depressed, has stronger umbilical tubercles and broader lateral lobes than that species. Some have confused it with *G. marianum* M. V. K., and the American representative has been referred by the writer a to that species. But the figures and descriptions of Foord and Crick enable these two species to be distinguished quite easily. *G. listeri* is not quite so involute as *G. marianum*, is always broader and coarser in sculpture. The breadth of the whorl in *G. listeri* is more than three-fourths of the diameter, in *G. marianum* it is only two-thirds of the diameter. Also in *G. listeri* the lobes are proportionally longer and narrower.

Occurrence.—In England, Belgium, and Germany *Gastrioceras listeri* is characteristic of the middle division of the Coal Measures. In America it has been found in the same horizon near Boles, Scott County, Ark., accompanied by *G. carbonarium*. It may thus be taken as diagnostic for this zone in these two regions.

The figured specimens came from near Boles, Scott County, Ark., and are deposited in the geologic collection of Leland Stanford Junior University, California.

GASTRIOCERAS.

GASTRIOCERAS MONTGOMERYENSE Miller and Gurley.

Pl. XVI, figs. 12-14.

Shell robust, breadth nearly as great as the diameter; whorls slowly expanding, three times as broad as high, deeply embracing, the outer whorl being indented to one-half its height by the inner one, but the umbilical shoulders of the inner whorls are exposed in the deep funnel-shaped umbilicus. Cross section of whorls depressed, trapezoidal, broader than is usual in Goniatites. Ventral portion flattened and broad; umbilical shoulders angular and abrupt, descending steeply to the umbilicus, and ornamented with sharply incised ribs or nodes. Umbilicus wide and deep, being one-half of the total diameter of the shell.

There are six constrictions to a revolution, beginning at the umbilical border, curving abruptly forward on the sides and then backward on the abdomen in a broad, gentle series.

Septa consisting of a pair of narrow tongue-shaped ventral lobes, separated by a short siphonal saddle, deeply incised by a secondary notch or lobe; a broad, short, lateral lobe on the sides halfway between the siphon and the umbilical shoulders.

This species is most nearly related to Goniatisites listeri, but is broader in proportion, and also has a greater number of constrictions to a revolution. The lateral sculpture is slightly coarser than on G. listeri.

Occurrence.—Upper Coal Measures, Montgomery County, Ill. Type in the paleontologic collection, Walker Museum, University of Chicago.

GASTRIOCERAS NOLINENSE Cox.

Pl. V, figs. 8-10.

Form subglobose, somewhat compressed laterally. Whorls highly arched, with broadly rounded abdomen and slightly flattened sides, deeply embracing, and covering most of the inner volutions. Umbilical shoulders abruptly rounded, umbilicus narrow, being not over one-fifth of the total
Surface smooth, but ribs and constrictions might possibly not be preserved by the iron ore by which the shell is replaced. Septa consisting of hastate lobes and tongue-shaped saddles; siphonal saddle long, mucronate, ventral saddles long and tongue-shaped, lateral saddle broadly rounded; ventral lobes narrow and hastate, lateral lobes broader and pointed, second lateral or auxiliary lobe on the umbilical border. The antisiphonal lobe is long, narrow, and pointed, flanked by a pair of shorter hastate lobes and narrow tongue-shaped saddles. The internal lateral saddles are very broad and shallow.

This species seems to be nearest akin to *Gastrioceras carbonarium*, with which its form and septa agree, but the smoothness of the shell of *G. nolitense* would serve to distinguish them, if it should be proved that the specimens are always devoid of ornamentation.

Occurrence.—Middle Coal Measures, Nolin, Edmonson County, Ky., and Des Moines formation, Middle Coal Measures, of Des Moines, Iowa.

Gastrioceras occidentale Miller and Faber.

Pl. VIII, figs. 6 and 7.

Shell subglobose, abdomen broadly rounded, sides sloping with a gentle curve to the abrupt umbilical shoulders. Whorls highly arched, deeply embracing, indented to about one-half of their height by the inner whorls. Umbilicus deep and wide, being about one-third of the total diameter. Umbilical shoulder crenulated or substomatose. Surface marked by four broad, shallow constrictions which run nearly straight across the abdomen. Between these furrows are fine transverse lines of growth, parallel to the constrictions. The septa, as shown by Miller and Faber, do not resemble those of any known goniatite genus, but are remarkably like the impressions of the internal muscle-scars, as seen on many ammonoids. This is probably what was seen by Miller and Faber and reproduced in the drawing. The septa when seen will probably be like those of other species of *Gastrioceras*.

Occurrence.—Middle Coal Measures, Elkhorn Creek, Kentucky.
GASTRIOCERAS.

GASTRIOCERAS PLANORBIFORME SHUMARD.

Shell evolute; whorls depressed, rounded, little embracing, elliptical rather than trapezoidal in cross section. Sides rounding gently to the abrupt umbilical shoulders, which, however, are not angular. Umbilicus very wide, exposing all the inner whorls, being more than a third of the total diameter.

Surface ornamented with fine imbricating bands of growth, bearing very minute striæ, which are flexuous on the abdomen; one constriction has been observed at about the end of the fifth revolution. Septa gastrioceran in character, with lobes inclined to be pointed, and broadly rounded saddles. Shumard's type was very small, and these septa are larval in character, so this probably does not represent a mature form, but might be the young of any one of several species of Gastrioceras.

Occurrence.—Upper Coal Measures, Kansas City, Dovers Landing, Mo.

GASTRIOCERAS SUBCAVUM MILLER AND GURLEY.

Pl. XVII, figs. 15–17.

This species was first described by Miller and Gurley from the Upper Coal Measures of Montgomery County, Ill. The writer has a specimen collected by Dr. N. F. Drake in the Upper Coal Measures, Cisco formation, of Graham, Young County, Tex., about 1,000 feet below the Permian.

The species resembles Gastrioceras globulosum, but the whorls are narrower, more depressed, more angular on the umbilical shoulders, and less rounded than on that species. The two agree in the septa and in the absence of umbilical ribs.

The figured specimen is in the paleontologic collection, Walker Museum, University of Chicago (Gurley collection).

Occurrence.—Upper Coal Measures, Montgomery County, Ill., and Graham, Young County, Tex.
CARBONIFEROUS AMMONOIDS OF AMERICA.

Gastrioceras welleri Smith, sp. nov.

Pl. XXIV, figs. 13–20.

Form evolute, widely umbilicate; whorls low and broad, increasing slowly in size. Cross section trapezoidal, ventral arch low. Umbilicus deep, funnel-shaped, with abruptly angular umbilical shoulders. The height of the whorl is one-third of the total diameter, and the width is twice the height. The width of the umbilicus is slightly more than one-third of the diameter of the shell. The impressed zone is about one-sixth of the height of the whorl. The greatest breadth of the whorl is at one-half the height.

The surface is ornamented with both cross striae of growth and periodic constrictions. These are seen on both shell and cast. The cross striae are sinuous and show only imbrication of the shell. There are no crenulations nor spiral lines visible. The constrictions on the last whorl are five in number, deeply incised, and slightly sinuous, bending forward in a broad sinus. The cross striae also form incipient undulations on the shell and cast. The length of the body chamber is at least one revolution.

The septa are typically gastrioceran; the ventral lobe is divided by a narrow siphonal saddle into two short, narrow branches; the principal lateral lobe is deeper, broad and pointed; the second lateral lobe is on the umbilical slope, just outside of the suture.

This species is most nearly related to Gastrioceras kingi Hall and Whitfield, but differs from that species in its weaker sculpture, fewer constrictions, less highly arched whorls, and more angular shoulders. The relative dimensions and the septa of the two species are exceedingly similar. The species belongs to the group of Gastrioceras globulosum Meek and Worthen, characterized by rather globose shape and absence of umbilical ribs. But G. welleri is proportionally narrower and has a wider umbilicus than G. globulosum.

Occurrence.—In the Middle Coal Measures, Des Moines formation, of Carroll County, Mo., exact locality unknown. The figured specimens are deposited in the paleontologic collection of the Walker Museum, University of Chicago (No. 1313). The specific name is given in honor of Dr. Stuart Weller, to whom the writer's thanks are due for the loan of the specimens.
Genus Paralegoceras Hyatt.

This genus was described by Hyatt to include forms similar in many respects to *Gastrioceras*, but with more highly arched whorls, helmet-shaped rather than trapezoidal in outline, narrower umbilici, and less pronounced sculpture. The septa are of the lancedate type, both lobes and saddles being narrow and long, the saddles being rounded and club-shaped, while the lobes are pointed and tongue-shaped, or mucronate. The lobes on each side are four in number—an external or ventral two laterals, and an auxiliary lobe just on the umbilical border. There are three internal or dorsal lobes—a long, pointed antisiphonal flanked by two similar laterals. This gives for *Paralegoceras* eleven lobes in all, one pair more than *Gastrioceras* possesses.

The type chosen was *P. iowense* Meek and Worthen.

Paralegoceras iowense White.

Pl. IV, figs. 9–11.

The following description is quoted from White's paper:

Shell apparently reaching a moderately large size; its transverse diameter less than that of the plane of its coil; volutions moderately embracing; the peripheral and lateral portions regularly rounded from the border of one umbilicus to that of the other; umbilici deep and somewhat narrow, but showing a portion of each of the inner volutions, their borders abruptly rounded inward from the sides; the transverse diameter of the volutions nearly three times as great as the dorso-ventral diameter, a transverse section of them showing a lunate outline. Living chamber and aperture unknown. Septa moderately distant from one another; dorsal [ventral] lobe longer than wide, deeply divided into two narrow, lanceolate, slightly diverging branches; dorsal [ventral] and superior lateral saddles linguiform and nearly equal in size; the two saddles separated by the superior lateral lobe, which is simple, slightly constricted in the middle, and acutely pointed; the inferior lateral lobe similar in shape to the superior, but a little shorter and less distinctly constricted; inferior lateral saddle a little shorter than the others, somewhat irregular in shape, and occupying the margin of the umbilicus. Surface apparently unornamented.

The only specimen in the collection, when perfect, probably reached a diameter of coil of about 55 millimeters.

This species bears considerable resemblance to the *G. globulosus* of Meek and

Worthen, but the septa of the Texan form have each one more lobe and saddle between the periphery and the margin of the umbilicus than have those of the other form.

There can be little doubt that this species is correctly referred to *Paralegoceras*, because the auxiliary lobe appears to be on the umbilical border giving the right number of lobes, although it is not shown in the drawing.

Occurrence.—Permian, Wichita formation, military crossing of the Big Wichita River, Baylor County, Tex.

Deposited in U. S. National Museum.

Paralegoceras iowense Meek and Worthen.

Pl. IV, figs. 12–14; Pl. IX, figs. 4–7.

The following description is quoted from Meek and Worthen, in Geological Survey of Illinois, Vol. II, p. 392:

Shell attaining a rather large size, discoidal or nearly flat on the sides, and narrowly rounded on the dorsum [abdomen]. Umbilical rather shallow, about one-half as wide as the breadth of the outer whorl from the ventral to the dorsal side, showing apparently about one-third of each inner whorl. Volutions increasing gradually in size, but gently convex on the sides, nearly twice as broad from the ventral to the dorsal side as the transverse diameter, and profoundly grooved within for the reception of the inner whorls; aperture, as near as can be determined from a section of the whorls, narrow-subovate, deeply sinuous on the ventral side. (Surface unknown.)

The septa are lanceolate, lobes and saddles all long, narrow, and crowded. Saddles rounded and tongue-shaped, lobes lanceolate and sharply pointed. The ventral lobe is divided by a siphonal saddle: the first and second lateral lobes are smaller than the ventral; a fourth lobe lies just on the umbilical border. There are therefore eight lobes visible on the outside,
one pair more than possessed by *Gastrioceras*, with which this genus has sometimes been united.

There is no other species with which this may be compared; the writer erroneously identified a species from the Lower Coal Measures of Arkansas with *P. iowense*, but further study of the specimen has shown it to be specifically distinct, and it is described in this paper under the name of *P. newsomii*. Hyatt has described, under the name of *Paralegoceras iowense* Meek and Worthen, a goniatite from the Bend formation of Texas. But the lobes are not exactly like those of the Iowa Coal Measures species, the third lateral saddle is on the umbilical shoulders, and the young shell is marked with ribs which form well-defined tubercles, even on the older shell. These differences were explained by the supposition that the Texas specimen was the young of *Paralegoceras iowense*, and might thus naturally show them. The Bend formation is called Coal Measures by the geological survey of Texas, but its fauna seems to be identical with that of the Fayetteville shale of Arkansas, which belongs to the Lower Carboniferous, and probably to St. Louis-Chester stage. Species that are almost certainly identical with *Glyphioceras incisum* Hyatt and *G. cumminsi* Hyatt have been collected in the Fayetteville shale of Arkansas.

Occurrence.—*Paralegoceras iowense* was first described from the Middle Coal Measures of Alpine, Iowa, and since then has been described from the Bend formation (St. Louis-Chester) of Texas, near Bend, San Saba County.

Paralegoceras newsomii Smith, sp. nov.

Pl. XII, figs. 4–9.

Shell somewhat discoidal, with flattened sides and rounded abdomen. Greatest breadth somewhat above the umbilical border. Umbilical shoulders rounded. Whorl indented to about two-fifths of its height by the preceding whorl. Height of whorl equal to the breadth, and nearly

CARBONIFEROUS AMMONOIDS OF AMERICA.

one-half the diameter. Umbilicus broad and shallow, one-fourth the diameter, and a little over half the height of the last whorl.

Septa consisting of an external lobe, two lateral, and a "suspensive" lobe on the umbilical shoulders: the internal lobes are three in number, long, narrow, and pointed; this gives eleven lobes in all for Paraleffoceras, while Gastrioceras has only nine, and Schistoceras has thirteen or more; that is, four external lobes on each side, one on each umbilical shoulder, and three internal. Schistoceras is the only Carboniferous member of the Glyphioceratidae that is known to have more than three internal lobes.

The type specimen is a septate cast that when complete must have been at least 4 inches in diameter. The whorls are broader and rounder than on P. iowense. They are quite involute, and the umbilicus is narrow on the young shell, becoming wider as the shell grows older. The surface of the cast is smooth, no constrictions or other ornamentations appearing on the older shell. On the younger shell the umbilical shoulders show faint ribs, that shade off into fine undulations on the sides. Hyatt has shown the same thing on P. iowense. But in the Texas specimen the ribs persist to a much later stage than on that from Arkansas.

Dimensions.—Although the specimen was not well preserved, the measurements of the entire form could be taken. They were as follows:

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>75.5</td>
</tr>
<tr>
<td>Height of last whorl from umbilicus</td>
<td>25.5</td>
</tr>
<tr>
<td>Height of last whorl from top of inner whorl</td>
<td>17.0</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>13.5</td>
</tr>
</tbody>
</table>

An inner coil taken out of the same specimen gave the following measurements:

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>28.5</td>
</tr>
<tr>
<td>Height of last whorl from umbilicus</td>
<td>12.0</td>
</tr>
<tr>
<td>Height of last whorl from top of inner whorl</td>
<td>7.5</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>6.0</td>
</tr>
</tbody>
</table>

These show the inner coils to be much lower, less highly arched, and less embracing than the outer ones.

Surface markings.—On the inner whorls a trace of the shell is preserved, and is like that figured by Meek. The undulating striae are like those common on the Glyphioceratidae.

Sutures.—The sutures are like those of P. iowense figured by Meek and

Worthen, but the siphonal saddle is notched by a small siphonal lobe, and all the lobes are somewhat constricted in the middle. The three external lateral saddles are broadly rounded, while the lobes are sharply pointed. The lobes are eleven in number, three on each side, one on each umbilical shoulder (suspensive lobe) and three internal, that is, covered by the involution. The interior lateral lobes and the antisiphonal lobe (dorsal) are very sharp and long. The sutures approach very closely to those of *Gastrioceras *russiense Tzwetaev, but *Paralegoceras* has one more pair of lobes than the Russian species and has also a suspensive lobe on the umbilical shoulders. In the latter characteristic *Paralegoceras newsonii* resembles *P. tseramyschevi* Karpinsky. Karpinsky \(^b\) has emended Hyatt’s genus to embrace those forms with two lateral lobes and a “suspensive” lobe on the umbilical shoulders. Hyatt \(^c\) emended the genus *Paralegoceras* to include those forms with the second lateral lobe on the umbilical shoulders, and he included in it *Gastrioceras *russiense Tzwetaev. But the Russian species has the suspensive lobe on the side and has only nine lobes in all, and thus ought to remain in the group characterized as *Gastrioceras*.

This species was first assigned by the writer\(^d\) to *Paralegoceras iowense* Meck and Worthen, although differences were noted. A reexamination of the type and careful comparison with all figures and descriptions of *Paralegoceras* shows that this form, while nearest to *P. iowense*, can not correctly be placed under that species. The umbilicus on *P. iowense* and on *P. newsonii* is one-fourth of the total diameter. The whorl of *P. iowense* has a breadth about three-fourths of its height, while on *P. newsonii* the breadth is nearly equal to the height. The Arkansas species is therefore more globose, with highly arched, helmet-shaped rather than laterally compressed whorls, has a much more rapid increase of size of the whorls, and is more involute and less discoidal than *P. iowense*.

Shumard’s description of *P. texanum* suggests a near kinship with *P. newsonii*, but this form seems to be more compressed laterally, more discoidal, and more involute than *P. newsonii*. *Schistoceras missouriense* Miller and Faber also resembles this species externally, but has one more pair of lobes and saddles, and thus can not be assigned to *Paralegoceras*.

\(^d\) Ammoniten der Artinsk-Stufe, p. 62, Pl. III, fig. 1.
Occurrence.—Paralegoceras newsomi was found in the Lower Coal Measures near Morrillton, Conway County, Ark., T. 5 N., R. 16 W., sec. 14, on the Arkansas River. Specific name in honor of the discoverer, J. F. Newsom. The type specimen is deposited in the geologic collection of the Leland Stanford Junior University.

Paralegoceras texanum Shumard.

The following description is quoted from Shumard’s paper:

Shell large, discoidal, strongly rounded on the dorsum [abdomen], gently convex on the sides, umbilicus deeply excavated, exhibiting the inner volutions, and having a diameter equal to two-thirds the greatest width of the last volution; margin subangulated; transverse section of last volution semielliptical; its dorso-ventral diameter about equal to, or a little greater than, the width from side to side.

A small fragment only of the shell is preserved in one of the specimens in the Texas State collection. It is extremely thin, and the surface is marked with numerous parallel revolving lines, crossed with flexuous transverse lines, presenting a neat cancellated appearance. There are also faint indications of transverse costa perceptible near the margin of the umbilicus. Septa deeply sinuous; dorsal [ventral] lobe cleft by a profound linguliform sinus with a broad base, into two narrow, elongated branches, which are not so wide as the sinuses between, and which are gently expanded in the middle and narrowed to an acute point at their extremities by an oblique truncature of their inner margins; dorsal [ventral] saddle linguliform, longer than wide and larger than the branches of the dorsal [ventral] lobe; superior lateral lobe having nearly the same form as the branches of the lateral lobe, but larger.

This description places it beyond doubt that the species is a Paralegoceras, but as it was never figured, and the type is lost, it is difficult to say whether P. texanum is equivalent to any of the other species of this genus. It may be the same as P. iowense Meek and Worthen.

Occurrence.—Lower Carboniferous, St. Louis-Chester stage, Bend formation, Wallace Creek, San Saba County, Tex.

Genus Schistoceras Hyatt.

Type of genus, Schistoceras hyatti Smith.

The genus Schistoceras was established by Hyatt* to include—
a single species which is not figured or described, but can be readily distinguished by its large bottle-shaped, siphonal saddle. This is the only characteristic by which

it differs from Prolecanites. The two arms of the ventral lobe are widely separated, and there are only three pairs of lateral lobes and a small umbilical lobe with two pairs of dorsal lobes. The lobes are hastate, and the saddles more rounded and club shaped, as in Prolecanites. The first pair of saddles have dorsal correspondents, and the annular lobe is deep and acute.

Professor Hyatt's type was never figured, and the existence of any other species belonging to this genus was unknown to him, so it was afterwards either ignored or the species of this group were included in other genera. Foord and Cricka recognized the affinity of this group with Agathiceras, which was established by Gemmellaro,b based on the type A. suessi Gemmellaro, to include Carboniferous ammonoids with rather helmet-shaped whorls, somewhat compressed laterally, with spiral ornamentation, with four external tongue-shaped goniatitic lobes. Karpinskyc subsequently included in this genus Adrianites Gemmellaro, which differed only in having a longer body chamber and a greater number of lobes. But such a character as this has a much greater significance in the simpler goniatites than in the specialized ammonites. Thus a difference in number of lobes may always be taken as indicating generic progress. It therefore seems better to leave the genera as Gemmellaro defined them, except as to their systematic position.

Haugd has recently included in Agathiceras two species of Schistoceras, S. fultonense Miller and Gurley, and S. hildrethi Morton, which he assigned to the Glyphioceratidae. On page 105 of the same work Haug redescrives S. hildrethi, and calls attention to the fact that it has one pair of lobes and saddles more than the type of Agathiceras, and therefore might represent a new genus descended from Gastriceras through Paralegoceras. In this he is in perfect accord with the writer, except that it was unknown to Haug that the genus Schistoceras met all these requirements. This genus undoubtedly resembles Agathiceras, but appears to differ in the constant number of lobes and saddles; one external lobe divided deeply by a bottle-shaped siphonal saddle, three lateral lobes decreasing in length toward the umbilicus, a short pointed lobe on the umbilical shoulder; and the internal lobes consisting of a long tongue-shaped undivided dorsal or antisiphonal lobe and two pairs of lateral lobes. There are, then, in all ten external and

b Fauna calc. Fusulina, p. 77.
c Ammoncen der Artinsk-Stufe, p. 64.
d Études sur les Goniatites, p. 33.
five internal lobes, four more than are possessed by *Paralegoceras*, and two more than *Agathiceras*.

Professor Hyatt has kindly turned over to the writer the type specimen of *Schistoceras*, and through the kindness of Dr. Stuart Weller the type of *Schistoceras* (*Gon.*) *fultonense* Miller and Gurley was open to his inspection. Haug has also refigured *Schistoceras hildrethi* Morton, so that all the known species of this genus were available for study. The type species has never been named until now, but the laws of priority demand a recognition of Hyatt's genus.

The ontogeny of *S. hyatti* shows unmistakably that the genus is derived from *Gastrioceras* through *Paralegoceras*, and is thus not a member of the Prolecanitidae. It may possibly be an ancestor of the Arcestidae, but that question can be settled only by a study of the ontogeny of the primitive Permian members of this group.

Occurrence.—At present the genus *Schistoceras* is known only from America, in the Upper Coal Measures.

Schistoceras fultonense Miller and Gurley.

Pl. XVI, figs. 15–17.

The following description is quoted from Miller and Gurley's paper:

Species medium size, subglobose, periphery regularly rounded; volutions rather rapidly expanding. Transverse section of a volution semicircular, the transverse diameter being a little more than the dorso-ventral. Number of volutions not known. The last volution embraces all the inner ones. Umbilicus small, open but not disclosing the inner volutions. The sides of the volutions are slightly flattened and inclined toward the regularly rounded periphery. The sides of the umbilicus are abrupt, and the greatest transverse diameter of a volution is near the abrupt descent to the umbilical cavity. The external shell of our specimen is not preserved.

The septa are lanceolate, the saddles all rounded and tongue-shaped, the lobes all pointed and slightly constricted at the middle. The external lobe is long, rather broad, and divided by a siphonal saddle of equal breadth. The superior lateral lobe is of equal length and similar to the external; the second lateral lobe is about two-thirds of the length of the superior lateral; the third lateral lobe is very small and stands well above the umbilical shoulder; on the umbilical border is a fourth lobe similar to
the third. The internal or dorsal lobes consist of a narrow and pointed antisiphonal lobe, flanked on either side by a pair of similar laterals, making five internal lobes.

Miller and Gurley did not attempt to assign this species to its proper genus, and E. Haug⁶ assigned it to Agathiceras. The writer has, through the kindness of Dr. Stuart Weller, examined the type specimen in the paleontologic collection of the Walker Museum, University of Chicago, and has been able to determine it unquestionably as a Schistoceras, since in the number and character of both external and internal lobes, fifteen in all, it agrees with Hyatt's type specimen.

It is most nearly related to Schistoceras missouriense Miller and Faber, but is more globose than that species and has a slightly narrower umbilicus, which is only one-fifth of the total diameter of the shell, while in S. missouriense it is nearly one-fourth. It also resembles S. hyatti in the narrow umbilicus, but is more robust than that species and apparently lacks the umbilical nodes. It agrees with S. hildrethi in its robust form, but differs in its narrower umbilicus. It is quite possible that all these species, S. fultonense, S. hyatti, and S. hildrethi, may be only local varieties of the same thing, in which case they would all fall under the synonymy of the latter species. But not enough material is known at present to demonstrate a gradation between them, and they are accordingly kept separated until the discovery of sufficient material should warrant a union of all or part of them in one species.

Occurrence.—Upper Coal Measures, Fulton County, Ill. Type in the paleontologic collection, Walker Museum, University of Chicago.

Schistoceras hildrethi Morton.

Pl. III, figs. 1 and 2.

Shell subglobose, involute; whorls highly arched, height being four-fifths of their breadth; helmet-shaped, deeply embracing, concealing all but the umbilical shoulder of the inner whorls, and indented by them to one-third of its height. Umbilicus wide and deep, being nearly one-third of

⁶ Études sur les Goniatites, pp. 33 and 105.
the total diameter. Umbilical shoulder abruptly rounded and ornamented with fine nodes or ribs.

Septa lanceolate, lobes pointed and linguiform, saddles rounded. Ventral saddle long, narrow, and bottle-shaped; ventral lobes long, tongue-shaped; three lateral lobes, similar in shape, but decreasing in size toward the umbilicus.

This species is most nearly related to *S. hyatti* Smith, but has a wider umbilicus, more globose whorls, and retains the umbilical ribs to a greater size. It is quite possible that *S. hyatti* may be only a variety of *S. hildrethi*, but they will be kept separate until enough specimens are found to show the intergradation.

Haug* redescribed *S. hildrethi* and assigned to it the genus *Agathiceras*, at the same time stating that it did not agree entirely with the type of *Agathiceras*; but Hyatt's genus *Schistoceras* was unknown to him, since it had not been figured and the type species had not been named.

Occurrence.—Upper Coal Measures ("Lower Barren"), near Cambridge, Guernsey County, Ohio, and Cisco formation, Graham, Young County, Tex.

Specimens are in the U. S. National Museum from Graham, and Haug has rediscovered one in the Verneuil collection of the École des Mines, Paris, presented by Hildreth, from Cambridge, Ohio.

Schistoceras hyatti Smith, sp. nov.

Pl. XX, figs. 1–8; Pl. XXI, figs. 10–13.

Form somewhat compressed laterally, with high helmet-shaped whorl, sloping sides, rounded venter, rounded umbilical shoulders, and deep, open umbilicus, showing the inner whorls. The last whorl is indented to two-fifths of its height by the preceding whorl. No ribs or constriction occur on the mature shell, but the surface is ornamented with fine spiral striae and fine sinuous cross striae, giving a beautifully reticulated appearance to the shell. In the adolescent stages there are strong umbilical ribs, which become obsolete at a diameter of about 15 mm. The septa are goniatitic, but complex, divided into a large number of lobes and saddles. The siphonal saddle is long, notched, and bottle-shaped; the three lateral

Etudes sur les Goniatites, p. 105.
saddles are long, narrow, and spatulate; the external lobe and the three lateral lobes are long, narrow, pointed, and tongue-shaped. On the umbilical shoulder is a fifth lobe, short and pointed, and on the dorsal side is a long, narrow, and pointed antisiphonal lobe, flanked on each side by a pair of lobes, of which the one nearest the dorsum is long and the second short, like that on the umbilical shoulder. There are thus fifteen lobes and fifteen saddles in all—one pair more than those of *Agathiceras* and two pairs more than those of *Paralegoceras*. It is prosiphonate, but it could not be ascertained at what stage the siphonal collars began to point forward.

The largest specimen seen had the following dimensions:

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>69</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>35</td>
</tr>
<tr>
<td>Height of last whorl from the preceding</td>
<td>23</td>
</tr>
<tr>
<td>Width of last whorl</td>
<td>35</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>14</td>
</tr>
<tr>
<td>Involution</td>
<td>12</td>
</tr>
</tbody>
</table>

This specimen was septate throughout, and the outer shell showed the impressions of the septa of nearly one-half a revolution in addition to this. The body chamber would have added at least three-quarters of a revolution more, so that the full diameter of this shell could not have been less than 175 mm.

The type of this species served Professor Hyatt as the type of his genus *Schistoceras*, and to his kindness the writer owes the use of the specimens. Since a specific name was never given to this form, the designation *Schistoceras hyatti* is appropriate.

This species is nearest to *S. hildrethi* Morton, but differs from it in being more compressed laterally, in the greater height of the whorl, in the slightly narrower umbilicus, and in the fainter umbilical ribs, which persist to a later stage in *S. hildrethi*.

Occurrence.—This species is at present known only from the Upper Coal Measures, Cisco formation, of Graham, Tex. Specimens of it, including the type (Pl. XX, figs. 5 and 6), are in the private collection of the late Prof. Alpheous Hyatt, of Cambridge, Mass.; in the Museum of Comparative Zoology; and in the U. S. National Museum.

Ontogeny.—Since the individual development of this species shows its phylogeny in the plainest terms, it is given below, so far as could be ascertained.
The smallest specimen seen (Pl. XXI, figs. 10a and 10b) had a diameter of 5.5 mm., was evolute, broad and low-whorled, with carinate form, strong umbilical ribs, and periodic constrictions. This unmistakably corresponded to *Gastrioceras*. At one-half revolution in addition to the above the dimensions were:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>7.75</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>3.00</td>
</tr>
<tr>
<td>Width of last whorl</td>
<td>2.25</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>5.00</td>
</tr>
<tr>
<td>Involution</td>
<td>0.75</td>
</tr>
</tbody>
</table>

The gastrioceran ribs still persisted, but the whorl had become more highly arched, and the septa were transitional from *Gastrioceras* to *Paralegoceras*, while the form was still typical of *Gastrioceras*. The addition of another half coil showed no change in the shell, except that the ribs were seen only on the umbilicus. At this stage the dimensions were:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>7.75</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>3.35</td>
</tr>
<tr>
<td>Height of last whorl from the preceding</td>
<td>2.5</td>
</tr>
<tr>
<td>Width of last whorl</td>
<td>6.0</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>4.0</td>
</tr>
<tr>
<td>Involution</td>
<td>1.0</td>
</tr>
</tbody>
</table>

This is shown on Pl. XXI, figs. 11a, 11b, and 11c.

Another revolution showed the whorl highly arched and helmet-shaped, and the ribs had disappeared; the resemblance to *Paralegoceras* was now plain, but the septa showed an extra pair of lateral lobes just within the umbilical border. No species of *Paralegoceras* has yet been observed with this extra pair of lobes, but such may yet be found, since only a few specimens of that genus are known. This stage (shown on Pl. XX, figs. 1 and 2, and Pl. XXI, fig. 12) gave the following dimensions:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>10.5</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>3.5</td>
</tr>
<tr>
<td>Width of last whorl</td>
<td>6.0</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>4.0</td>
</tr>
<tr>
<td>Involution</td>
<td>1.0</td>
</tr>
</tbody>
</table>

At diameter of 30 mm., one-half revolution more than the preceding, the shell had taken on mature characters, the septa were typical of *Schistoceras*, and after this only an increase in size took place. This early mature stage is shown on Pl. XX, fig. 3.
A still larger specimen (one of Hyatt's types) is shown on Pl. XX, figs. 5 and 6, giving the following dimensions:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>42</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>20.5</td>
</tr>
<tr>
<td>Height of last whorl from the preceding</td>
<td>14</td>
</tr>
<tr>
<td>Width of last whorl</td>
<td>21</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>9.5</td>
</tr>
<tr>
<td>Involution</td>
<td>6.5</td>
</tr>
</tbody>
</table>

The largest specimen figured, diameter 69 mm., showed about two-thirds of a revolution more than the last, but no change in septa, shape, or surface characters (Pl. XX, figs. 7 and 8; Pl. XXI, fig. 13). Thus Schistoceras clearly is derived from Gastrioceras, through Paralegoceras, and undoubtedly belongs to the Glyphioceratidae, being the most complex member of that group.

Schistoceras missouriense Miller and Faber.

Pl. VIII, fig. 1.

Shell subglobose, involute, whorls highly arched, helmet-shaped, sides somewhat flattened, about twice as high as broad, deeply embracing, showing but little of the inner whorls, and deeply indented by them. Umbilical shoulders abrupt and the umbilicus is deep and rather narrow, being hardly one-fourth of the total diameter. Surface apparently smooth, no constrictions being visible. The preservation of the cast does not permit the determination of the presence or absence of umbilical ribs.

Septa consisting of four lateral lanceolate lobes on each side, and probably a fifth on the umbilical border. The saddles are also like the lobes, but more constricted and club-shaped. The form and septa are unmistakably those of Schistoceras, and the species may very likely be identical with either S. hyatti or S. hildrethi, but the figures and description of S. missouriense do not permit this determination. It seems to be more compressed and to have a narrower umbilicus than either of the other species.

Occurrence.—Upper Coal Measures, Missourian stage, Brush Creek, near Kansas City, Mo. Type in paleontologic collection, Walker Museum, University of Chicago.
Family AGANIDIDÆ.

Genus AGANIDES de Montfort.

AGANIDES ROTATORIUS de Koninek.

Pl. XVI, fig. 19; Pl. XIX, figs. 12–14.

1898. Aganides rotatorius, E. Haug. Études sur les Goniatites, p. 39, fig. 9e.
1901. Aganides ixion, F. Frech. Üeber devonische Ammonoeeen, p. 74, fig. 32c.

This species, which is very common at Rockford, Ind., but unknown anywhere else in America, is quite easily recognizable. The following description is based on a number of specimens from Rockford.

Discoidal, compressed laterally, with sides sloping gently to the
rounded abdomen; umbilical shoulders broadly rounded, abdominal shoulders more abruptly. Greatest width of whorl at about one-fifth of height of whorl. Involution almost one-half of height of whorl. Umbilicus very narrow, almost closed, and not showing the inner coils. Surface smooth, no constrictions, ribs, or other ornamentation at maturity; but the writer has observed constrictions on a specimen of diameter 13 mm. Septa composed of a tongue-shaped ventral lobe, with a narrow, long, pointed lateral lobe on each side, narrow external saddle and broad lateral saddle. On the umbilicus there is a short broad lobe, and concealed by the involution there is a pointed spatulate antisiphonal lobe, resembling the external one, and on each side a narrow pointed lateral lobe. The septa figured here are from actual drawings from a specimen broken open to expose the interior. Number of septa to a revolution from 17 to 20.

James Hall at first considered *Goniadites rotatorius* and *G. ixion* to be identical, but afterwards changed his opinion. The differences on which he based the specific discrimination were the greater number of septa to a revolution in *G. ixion* and the greater lateral compression. But these very characters are not constant in the specimens from Rockford, the number of septa to a revolution varying from 17 to 20, and some shells are more compressed than others. The variation between individual specimens from Rockford is at least as great as the differences between de Koninck’s and Hall’s types, and most paleontologists have always believed in the identity of the species.

The following are the dimensions of a Rockford specimen:

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Millimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>68.0 = 1.00</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>39.0 = .56</td>
</tr>
<tr>
<td>Height of last whorl from the preceding</td>
<td>21.0 = .30</td>
</tr>
<tr>
<td>Width of the last whorl</td>
<td>27.0 = .40</td>
</tr>
<tr>
<td>Involution</td>
<td>18.0 = .26</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>2.5 = .03</td>
</tr>
</tbody>
</table>

Compared with Hall’s figures and those of de Koninck this specimen might belong to either. In fact, instead of being more compressed than the Belgian form, it is rather broader.

Hyatt" chose *Goniadites ixion* Hall as the type of his genus *Brancoceras*, but this name had been preoccupied three years before by G. Steinmann for a genus of Cretaceous ammonites. It has, however, been demonstrated.

that de Montfort used as the type of his genus *Aganides* the same species afterwards described by de Koninck as *Goniatis rotatorius*. Since this genus was described and figured by de Montfort, the laws of priority demand a recognition of it, in spite of the confusion made by later writers, for which he was not responsible.

Occurrence.—*Aganides rotatorius* occurs in America only in the goniatite beds of Rockford, Ind., in the Kinderhook stage. In Europe it is known only in the calcareous shales of Tournai, in Belgium, and in the same horizon in Ireland. Since the species occurs in the same horizon in two widely separated regions, it may be taken as a zone fossil and the horizon called the zone of *Aganides rotatorius*. Even if the species should not be absolutely identical, there are so many other identical forms in the two regions that the correlation is beyond doubt. The form described by M. Tzwetaev as *Brachoceras rotatorius*, from the Moscow limestone of Russia, probably belongs to another species, although quite closely related to the one under discussion.

Aganides discoidalis Smith, sp. nov.

Pl. XXIV, figs. 5–7.

Shell discoidal, involute, laterally compressed, whorls deeply embracing, and deeply impressed by the inner volutions. The height of the whorl is slightly more than one-half of the total diameter, and it is indented to nearly one-third of its height by the inner whorl. The width of the last whorl is nearly one-third of the total diameter of the shell and four-sevenths of the height. The umbilicus is almost entirely closed. The sides of the whorl are flattened convex, curving gently to the narrow and rounded venter.

The surface (of the cast) is ornamented only with obscure sigmoidal striae of growth, with a broad, backward-pointing sinus.

The septa are of the usual *Aganides* type, with a tongue-shaped ventral lobe, deep and rather narrow, pointed lateral lobe, narrow external saddle, and broadly rounded lateral saddle.

This species is more compressed and discoidal than any other known species of this genus.

Occurrence.—In the Lower Carboniferous, Kinderhook stage, Chouteau limestone, of Pettis County, Mo. The type is deposited in the paleontologic collection of the Walker Museum, University of Chicago, No. 8601. The writer's thanks are due to Dr. Stuart Weller for the use of the specimen, which is the only one known.

Aganides jessice Miller and Gurley.

Pl. XVII, figs. 18–20.

Shell discoidal, laterally compressed, involute. Whorls high, indented to one-half of the height by the preceding whorl; abdomen narrowly rounded, sides flattened. Volutions rapidly expanding, concealing all the inner whorls. Umbilical shoulders abruptly rounding; umbilicus closed. Breadth of whorl is equal to three-fourths of the height and nearly one-half of the total diameter.

Septa composed of a long, tongue-shaped, undivided, ventral lobe and a shorter and more rounded lateral. First lateral saddle long and narrowly rounded; second lateral short and broadly rounded. Internal septa unknown.

Surface smooth, so far as known.

This species is closely related to *Aganides rotatorius*, but has somewhat simpler septa, with longer ventral lobe, and rounded instead of angular laterals. The form is also slightly more robust than that of *Aganides rotatorius*.

Dr. J. M. Clarke notes *Aganides jessice* as a member of the genus *Tornoceras*, but its characters agree better with *Aganides*.

Occurrence.—Lower Carboniferous, Kinderhook stage, Sedalia, Mo.

Aganides propinquus Winchell.

Shell robust, whorl highly arched, with broadly rounded abdomen and moderately convex sides. Umbilicus closed, not showing the interior

\[a\text{Naples Fauna (Fauna with } Manlicoceras \text{ intumescens) of New York, p. 110.}\]
whorls. Septa with short funnel-shaped ventral lobe, and longer, broader, and rounded lateral lobe. Ventral saddles parabolic, lateral saddles rounded.

Occurrence.—Lower Carboniferous, Kinderhook stage, Marshall group, Point aux Barques, Mich.

Aganides romingeri Winchell.

Shell subglobose, whorl highly arched with regularly rounded venter and gently convex sides, and but slight umbilical depression. Umbilicus closed. Breadth of whorl equal to one-half of the total diameter of the shell.

Ventral lobe long, linguiform; clarate acute; lateral lobe long as ventral, narrow and sublinguiform. Ventral saddle obtuse, linguiform, unsymmetric; lateral saddle deep, broad, extending nearly as far forward as the ventral.

This species resembles Aganides rotatorius de Koninck, but has narrower lateral lobe and is more robust on subglobose; the breadth of the whorl is one-half of the diameter, instead of only one-third, as in A. rotatorius.

Occurrence.—Lower Carboniferous, Kinderhook stage, Marshall, Mich.

Aganides sciotoensis Miller and Faber.

Pl. VIII, figs. 2 and 3.

The following description is quoted from the paper by Miller and Faber:

Shell medium, or rather above medium size; somewhat lenticular in form, obtusely rounded on the dorsum [abdomen]. Umbilicus consisting of a shallow, funnel-shaped fossette, without exposing any of the volutions. Volutions few, rapidly enlarging, the outer ones profoundly grooved for the reception of the inner ones, and depressed convex on the sides. The greatest transverse diameter is at the margin of the umbilical fossette, and it is about two-thirds the dorso-ventral diameter. Seven furrows radiate from the margin of the umbilicus on each side, curve gently forward at the superior lateral sides and then curve more abruptly backward across the dorsum [abdomen], as is shown in one specimen. Probably, if the specimen was
perfectly preserved, it would show eight of these radiating furrows. Surface between the furrows showing traces of finer similarly sinuous lines. Body chamber and aperture unknown.

The sinuosities of the septa, as near as they can be determined from our specimen, may be described as follows: Dorsal [ventral] lobe lanceolate and pointed, superior lateral lobes longer than the dorsal, and pointed at the extremities; dorsal [ventral] saddle sublinguiform, gradually narrowing and rounded at the extremity, lateral saddles similar in outline, the three inferior lobes short, with corresponding saddles.

Occurrence.—Lower Carboniferous, Osage stage, Upper Waverly, Sciotoville, Ohio.

Aganides ? shumardianus Winchell.

Shell discoidal, involute, laterally compressed. Whorl highly arched, narrow, deeply embracing, but showing a portion of the inner whorls. Umbilicus open, width nearly one-fourth of the total diameter. Height of whorl nearly one-half of the total diameter and once and a half times the height.

Septa of the usual Aganides type. Ventral lobe simple, tongue-shaped, pointed; lateral lobe wider and longer, also pointed; internal septa consisting of a long, slender antisiphonal lobe, with a pair of shorter laterals.

Occurrence.—Lower Carboniferous, Kinderhook stage, Lower Waverly group, Newark, Ohio.

Genus Muensteroceras Hyatt.

The genus Muensteroceras was established by Hyatt, with Goniatites parallels Hall as the type, to include evolute, compressed, discoidal forms, with highly arched whorls and moderately wide umbilicus. The septa are glyphioceran, and the most distinctive feature is the presence of an acute second lateral lobe outside of the umbilicus.

The genus has usually been abandoned by later writers, being considered as a synonym of Goniatites de Haan or Glyphioceras Hyatt; indeed, it is impossible to draw any line between these three groups, but the extremes may be differentiated.

E. Haug proposes to retain the name, but as a subgenus under *Pericyclus* Mojsisovics, on account of the sharp umbilical lobe. But in reality all the *Glyphioceratidae* have just such a lobe, only it is usually on the umbilicus, and the presence of such a lobe is hardly sufficient justification for classing the smooth-shelled *Muensteroceras* under the roughly sculptured *Pericyclus*.

The compressed form of this genus seems to indicate its origin in *Agnides*, by dividing the ventral lobe and widening the umbilicus.

Muensteroceras? holmesi Swallow.

Discoidal, involute, whorls high, abdomen sharply rounded, sides flattened. Whorls deeply embracing, increasing rapidly in height. Umbilicus narrow, funnel-shaped. Surface smooth, so far as known. Septa unknown.

Occurrence.—Lower Carboniferous, Kinderhook stage, Cooper County, Mo.

Muensteroceras? indianense Miller.

Pl. V, figs. 3 and 4.

Shell discoidal, involute, deeply embracing, the inside whorl being entirely concealed by the outer. Whorl highly arched, laterally compressed, and indented to one-half of its height by the preceding; sides flattened; abdomen rounded and rather broad. Umbilicus very narrow, not showing the inner whorls. Surface marked by four constrictions that run from the umbilicus nearly straight across the abdomen. Septa unknown.

Occurrence.—Lower Carboniferous, Kinderhook stage, Knobstone formation, Clark County, Ind. Type in the State Museum at Indianapolis.

Muensteroceras? morganense Swallow.

Shell subglobose, whorl deeply embracing, with abdomen and sides regularly rounded. Height of the whorl is one-half of the width and a little over one-fourth of the total diameter. Umbilicus narrow and deep, funnel-shaped. Surface ornamented with three or four deep and broad constrictions to a revolution.

Occurrence.—Lower Carboniferous, Kinderhook stage, Chouteau limestone, Missouri.

Muensteroceras osagense Swallow.

Pl. XXIV, figs. 8–12.

Shell discoidal, moderately convex, with broadly rounded abdomen and somewhat flattened sides. Whorls deeply embracing and deeply indented by the inner volutions. The umbilicus is narrow and funnel-shaped, exposing only the umbilical shoulders of the inner whorls. The height of the whorl is one-half of the total diameter of the shell, and the width is equal to the height. The last whorl is indented to one-half its height by the preceding volution. The umbilicus is one-sixth of the total diameter.

The surface of the cast is marked, on the last revolution, with six deeply incised, sinuous constrictions, showing a narrow backward-pointing sinus.

The septa have a divided ventral lobe and a moderately deep lateral. The lobes are all pointed, and the saddles are rounded. Swallow compared this species with Glyphioceras micronotum Phillips, but the relationship is not close.

Occurrence.—Lower Carboniferous, Kinderhook stage, Cooper, Moniteau, and Pettis counties, Mo. The specimen figured in this paper is deposited in the paleontologic collection of the Walker Museum, University of Chicago (No. 8602); it was found in the Chouteau limestone of Pettis County, Mo., the more exact locality being unknown. The writer's thanks are due Dr. Stuart Weller for the use of the specimen.

1898. **Pericyclus (Muensteroceras) oweni**, E. Haug, Études sur les Goniatis, p. 102, Pl. 1, fig. 43.

1901. **Glyphioceras oweni**, F. Frech, Ueber devonische Ammoniten, p. 84, fig. 37a.

Shell discoidal, laterally compressed, abdomen rounded, sides somewhat flattened. Whorl about as high as broad, deeply embracing, covering four-fifths of the inner whorl, and indented by it to one-half of the height. Cross section of the whorl helmet-shaped; height less than one-half of the total diameter; greatest breadth a short distance above the umbilical shoulders, which are abrupt and angular. Umbilicus moderately wide, varying in width from one-fourth to more than one-third of the total diameter, and exposing the angular shoulders of all the inner whorls. The inner whorls are very globose, the breadth at diameter of 10 mm. being nearly equal to the diameter, and the umbilicus is proportionally narrower. Surface of the shell, which is rarely seen, marked by fine transverse striae. Surface of cast marked by three or four wide and shallow constrictions, beginning on the umbilical shoulders and bending backward over the abdomen in a broad curve. These constrictions are variable in interval and become much more frequent on old shells.

Septa close together, consisting of a long, narrow siphonal lobe, divided by a short, notched siphonal saddle; a sharply pointed, shallow
lateral saddle, and a short, pointed auxiliary lobe on the umbilical shoulder; the superior lateral saddle is deep, and the second is broad and shallow. The internal septa consist of a short, pointed antissipholal lobe and a pair of similar laterals; the antissiphalal saddle is narrow, and the interior lateral is broadly rounded.

This species is most nearly related to *Muensteroceras (Glypriioceras) barroisi* Holzapfel, of the Lower Carboniferous of Germany, but differs in the backward-pointing curve of the constrictions, greater width of the umbilicus, more depressed whorls, and greater approximation of the septa.

The species is exceedingly variable in width of umbilicus, breadth of whorls, and involution, so that it is possible that there are several distinct but nearly related species included in this one. Prof. A. Hyatt proposed the name *Muensteroceras whitei* for a specimen figured by Dr. C. A. White under the name of *Goniates oweni* Hall. But since White's figure seems to be merely a copy of Hall's illustration of the type specimen, this name becomes merely a synonym. In a large number of specimens examined by the writer there was no constancy of characters that might justify a separation into species or even varieties.

Occurrence.—*Muensteroceras oweni* is common in the Lower Carboniferous, Kinderhook stage, goniatite limestone of Rockford, Ind., associated with *M. parallelum* Hall, *Prolecanites lyoni* Meek and Worthen, *Aganides rotatorius* de Koninck, *Prodromites gorbyi* Miller, *P. prematurus* Smith and Weller. All these are of distinctly European type, except *Prodromites*, which is of unknown antecedents. *M. oweni* has also been cited by Wincell from the Kinderhook stage, Marshall group, of Michigan, and in somewhat the same association as at Rockford, Ind. The illustrations on Pl. XIX, figs. 3–8, are copied from Hall's Paleontology of New York, Vol. V, Pt. 11, Pl. LXXIII, figs. 3–8.

Muensteroceras parallelum Hall.

Pl. XVI, fig. 3; Pl. XIX, figs. 1, 2.

MUENSTEROCEAS. 121

Shell discoidal involute, laterally compressed, deeply embracing, concealing nearly all of the inner whorls. Abdomen highly arched, sides flattened. Whorl high, helmet-shaped, indented to three-fifths of its height by the inner volution, width four-fifths of its height, which is more than one-half of the total diameter. Greatest breadth at a point even with the top of the inner volution. Umbilicus narrow, less than one-fifth of the total diameter; umbilical shoulders abrupt and angular.

Surface marked by about four backward-curving constrictions.

Septa similar to those of *M. oweni*, but closer together.

This species is most nearly related to *M. oweni*, but differs from it in the greater lateral compression, the higher whorls, the narrower umbilicus, greater involution, and greater approximation of the septa. In the young shell the form is more globose, as the writer has seen on a specimen 10 mm. in diameter, broken out of a large shell. In this small specimen the umbilicus was still narrow, and the sides still somewhat compressed, so that even at this stage it could be distinguished from the young of *Muensteroceras oweni*.

This young specimen had the following dimensions as compared with the young of *Muensteroceras oweni*:

<table>
<thead>
<tr>
<th></th>
<th>M. parallelum</th>
<th>M. oweni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>5.5</td>
<td>4</td>
</tr>
<tr>
<td>Height of last whorl from the preceding</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Width of last whorl</td>
<td>7</td>
<td>8.25</td>
</tr>
<tr>
<td>Involution</td>
<td>2.5</td>
<td>2</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>2</td>
<td>3.5</td>
</tr>
</tbody>
</table>

The septa at this young stage are still of the glyphioceran type, and very similar to those of the adult except that they are less approximate, and the ventral lobe is less deeply divided by the siphonal saddle. A
smaller specimen would doubtless show the Argiades stage of development with undivided ventral lobe, but the writer did not succeed in breaking out any smaller shell than diameter of 10 mm.

Occurrence.—Lower Carboniferous, Kinderhook stage, goniatite beds of Rockford, Indiana. Winchell has also cited this species from the Kinderhook, Marshall group, of Michigan.

The septa shown on Pl. XVI, fig. 3, are drawn from a specimen in the writer's collection. The illustration on Pl. XIX, figs. 1 and 2, are copied from Hall's Palaeontology of New York, Vol. V, Pt. II, Pl. LXXIII, figs. 1 and 2.

Genus Gonioloboceras Hyatt.

Gonioloboceras? allei Winchell.

1870. Goniatites allei, A. Winchell, Sketches of Creation, p. 116, fig. 50.

Shell discoidal, laterally compressed, involute. Abdomen highly arched and narrowly rounded, sides flattened. Umbilicus closed, not showing any of the inner whorls. Whorl increasing rapidly in height and indented to one-half of its height by the preceding volutions. Surface ornamented with fine spiral lines, and with four constrictions to a revolution. Septa consisting of a shallow, broad, pointed external lobe, divided by a broad ventral saddle, which is probably notched: a broader and pointed lateral lobe. The first and second lateral saddles are somewhat similar to the lateral lobe, but rather rounded; internal septa consisting of a pointed dorsal, and pair of similar laterals. This form is doubtfully referred to Gonioloboceras, but Winchell's description is inadequate, and his figure in Sketches of Creation is hardly more than a sketch.

Gonioloboceras goniolobum Meek.

Pl. IV, figs. 1–3.

Meek's Goniatites goniolobus was taken by Hyatt as the type of the new genus Gonioloboceras, of the family Magnosellaridae, characterized by

* Cephalopodia, 1900, p. 551.
the flattened sides, narrow abdomen, and the extremely angular lobes. The specimen came from an unknown horizon and locality of the Carboniferous of New Mexico, presumably from the Coal Measures. The writer, however, considers this genus as a member of the Glyphioceratidae, from observations made on the young of another species. It probably came from Aganides though Muensteroceras, and in turn gave rise to Dimorphoceras by a further division of the external lobes. It seems, however, quite possible that the Dimorphoceras of the Upper Coal Measures, while similar to that of the Lower Carboniferous, may not necessarily be of common origin with it.

Occurrence.—Carboniferous, Coal Measures. New Mexico, locality unknown.

Gonioloboceras ? limatum Miller and Faber.

Pl. VIII, figs. 8 and 9.

The following description is quoted from Miller and Faber's paper:

Shell small, elegant, thin, discoidal, rapidly expanding in circumference, with very slight increase in thickness; sides flat, and dorsum (abdomen) narrowly rounded. Umbilicus small, abrupt, exposing very little of the inner whorls. Volutions expanding dorso-ventrally with very little increase transversely; the outer ones fully embracing the inner ones, flattened on the sides from the umbilicus to the middle of the superior lateral saddles, from which a flat depression extends to the margin of the rounded dorsum (abdomen).

The septa are of the Aganides type: ventral lobe linguiform, narrow, twice as long as wide; lateral lobe broad, shallow, and pointed; ventral saddle broader than the ventral lobe and of the same length; superior lateral saddle broader than the ventral saddle, narrow, and rounded at the extremity; second lateral saddle broadly rounded. Internal septa consisting of an antisiphonal lobe and a pair of similar laterals.

This form is evidently transitional from Aganides to Gonioloboceras; it is a typical Aganides on the younger part of the shell, but the ventral lobe seems to be divided on the last whorl.

Occurrence.—Lower Carboniferous, St. Louis stage, Crab Orchard, Ky. Type in the paleontologic collection, Walker Museum, University of Chicago.
GONIOLOBOCERAS.

GONIOLOBOCERAS WELLERI Smith, sp. nov.

Pl. XX, figs. 9-11; Pl. XXI, figs. 1-6.

This species was at first thought by the writer to be identical with G. goniolobum Meek, but it has the sides somewhat more flattened, is more compressed laterally, and at maturity has the venter narrow, angular, and slightly furrowed; also the ventral saddle is not notched, but has a tongue-shaped forward extension. In G. goniolobum the siphonal saddle is narrow, in G. welleri it is broad and rounded. These differences may be due to individual variation or to incorrect drawing of Meek's type; but none of the specimens before the writer varied in these respects.

The adolescent stage (figured on Pl. XX, figs. 9-11) of a young shell, broken out of a mature specimen from Graham, Tex., shows the characters of Muensteroceras, and proves that the genus is derived from a typical member of the Glyphioceratidae, for the shape of the shell, the wide umbilicus, flattened sides, broadly rounded abdomen, constrictions, and the septa all agree with that genus.

The shell is smooth, compressed, with flattened sides and narrow rounded venter at early maturity; angular and slightly furrowed at a later stage. The umbilicus is very narrow, showing none of the inner whorls; the whorl is involute, deeply embracing, indented to more than one-third of its height by the preceding whorl. Surface smooth, devoid of constrictions, ribs, or other ornaments. The septa are angular and sinuous, showing the general character of the Glyphioceratidae. Internal septa show the characteristic sharp antisiphonal lobe and the tongue-shaped internal lateral on each side, as do all typical members of the Glyphioceratidae.

Occurrence.—The first specimen of this species was seen by the writer in the paleontologic collection of the Walker Museum, University of Chicago, from the Upper Coal Measures of Montgomery County, Ill. The only other specimens known are from the Upper Coal Measures, Cisco formation, of Graham, Young County, Tex., where they were collected by A. B. Gant. Other specimens are in the private collection of the late Prof. Alpheus Hyatt, in the U. S. National Museum, and in the private collection of the writer, obtained on a recent visit to Graham. The genus Milleroceras of Hyatt is probably only the young of Gonioloboceras, but not enough specimens are known at present to determine this.
The specific name is given in honor of Dr. Stuart Weller, of the University of Chicago.

The type is figured on Pl. XXI, figs. 1 and 2. It was presented to the writer by Dr. Gant, and was collected from the Cisco formation, Upper Coal Measures, of Graham, Tex. It is in the writer's collection in the Leland Stanford Junior University, California.

Genus Dimorphoceras Hyatt.

The type of this genus* was Goniatites gilbertsoni Phillips. All the species are rather compressed, involute, smooth shells, with narrow umbilicus. The surface is ornamented only by the curved cross striae of growth. The ventral lobe is divided by a deep, notched, siphonal saddle, and the two lobes thus formed are divided a second time, giving a pair of short, narrow ventral lobes on each side of the abdomen. On the middle of the flank there is a deeper, pointed lateral lobe, and another on the umbilical shoulder. Inside, concealed by the involution, is a tongue-shaped antisiphonal lobe, flanked on each side by a pointed lateral. Thus there are three internal lobes, six external, and a pair on the umbilical shoulders, eleven in all. This is the same number as in Paralegoceras, but of different character. In Paralegoceras the multiplication of lobes takes place within the umbilical border, but in Dimorphoceras the internal number is normal and the extra pair of lobes is formed by division of the ventral lobes. This genus probably comes from Goniodoboceras, by secondary division of the external lobes.

Occurrence.—Dimorphoceras occurs in Europe in the Lower Carboniferous and the Coal Measures; in America it is known only from the Upper Coal Measures, Cisco formation, near Graham, Young County, Tex., the specimen described in this paper being the only one known to be in any collection.

Dimorphoceras texanum Smith, sp. nov.

Pl. XX, figs. 12-15.

Shell discoidal, compressed, involute, with narrow umbilicus, flattened sides, and greatest breadth at the umbilical shoulders. Venter narrow, flattened, angular, and slightly furrowed at maturity, but rounded in

youth. The surface is free from sculpture and ornamented only with lines
of growth.

The septa consist of a ventral lobe, divided by a broad, notched siphonal
saddle, and the pair of external lobes thus formed are divided a second time
by a narrow, spatulate saddle; a broad, pointed lateral lobe, and another
somewhat similar on the umbilical shoulder. Inside the involution there
is a long, narrow, tongue-shaped antisiphonal lobe, flanked by a pair of
shorter laterals. There are thus six external lobes, a pair on the umbilical
shoulders, and three internal, eleven in all. This is the number possessed
by Paralegoceras, but in that genus the division of lobes takes place on the
dorsal side, inside the umbilicus, while in Dimorphoceras it takes place on
the ventral side.

Dimensions of specimen figured.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>54</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>32</td>
</tr>
<tr>
<td>Height of last whorl from the preceding</td>
<td>22</td>
</tr>
<tr>
<td>Width of last whorl</td>
<td>13</td>
</tr>
<tr>
<td>Involution</td>
<td>10</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>3</td>
</tr>
</tbody>
</table>

This specimen was septate throughout, and if the body chamber added
three-fourths of a whorl, the complete diameter must have been not less
than 100 mm.

Occurrence.—Upper Coal Measures, Cisco formation, west of Mars Hill,
near Graham, Young County, Tex., collected by A. B. Gant. The type is
in the private collection of the late Prof. Alpheus Hyatt, of Cambridge,
Mass., to whose kindness the writer owes the use of the specimen.

Genus Milleroceras? Hyatt.

Milleroceras parnishi Miller and Gurley.

Pl. XVI, figs. 6–8.

Pl. LV, fig. 1.

No. 11, p. 36, Pl. IV, figs. 6–8.

This species is the type of Hyatt’s supposedly new genus *Milleroceras*,
which he assigned to the Primordialidae. The writer has examined the
type, in the paleontologic collection of the University of Chicago, and is con-
vinced that it is merely the young of some member of the Glyphioceratidae, probably either Goniohobocecor or Dimorphoceras. At any rate, the occurrence of the Primordialidae in the Upper Coal Measures is extremely unlikely, since that family is not known above the Devonian.

Occurrence.—Upper Coal Measures, Kansas City, Mo.

Superfamily ARCESTIDAE.

The ontogeny of but few of the Paleozoic forms assigned to the Arcestidae has been investigated, but Triassic species show in their adolescent stages strong resemblances to some of these, and enable us to piece out their history.

The genera thought to represent the Arcestidae in the American Carboniferous are Agathiceras, Popanoceras, Shumardites, and Waagenoceras. Haug has placed the first with the Glyphioceratidae, and the second with the Agoniatitidae, leaving only Waagenoceras as an undoubted representative of the Arcestidae. This classification, however, is based purely on resemblances of adults, hence the writer has preferred to follow Karpinsky, whose classification seems to agree more closely with the facts brought out by the writer’s investigation of the ontogeny of Shumardites, Arcestes, and Popanoceras. Also the supposed species of Agathiceras, on which Haug’s opinion was based, is shown in the present paper to be a Schistoceras, and to belong to the Glyphioceratidae. Hyatt classed Popanoceras under the Prolecanitidae, with which group, as now understood, it has manifestly no kinship. In his most recent work Hyatt classed Popanoceras in the family Popanoceratidae along with Waagenoceras under the superfamily Arcestida.

In the Paleozoic Arcestidae may be found at least two families with characteristics in common that point to a common origin in the gastrioceran branch of the Glyphioceratidae, but with sufficient differences to make probable their derivation from different genera. Agathiceras, Adrianites, Popanoceras, Stacheoceras, and possibly Doryceras and Clinolobus all seem to be nearly related, and form a transition from the goniatitic Paralegoceras, through Agathiceras, into genuine ammonites characterized by a trianidian development of the lobes. Hyatt has classed some of these genera under the group Popanoceratidae, which term is here used for this branch of the Arcestes-like forms.

Shumardites, Waagenoceras, Cyclolobus, and Hyattoceeras have phylloid development of the septa, and are unlike the Popanoceerasidae in general characters. K. A. von Zittel has classed some of these under the group Cyclolobidae, which term is here retained as a family name for the Paleozoic Arcestidae with phylloid septa. The writer has observed in Shumardites a transition from Schistoceras; and in Schistoceras a development from Gastrioceras, through Paralegoceras. This family is, therefore, undoubtedly derived from the gastrioceran branch of the Glyptoceratidae.

It is not possible, at present, to determine which of these families gave rise to the typical Arcestidae of the Trias, but the writer is inclined to the opinion that they came from the Cyclolobidae. The young stages of some Arcestes, however, show a strong resemblance to Adrianites, and both branches may be represented among them. Popanoceeras, at any rate, still persisted until the middle Trias, with its characters little changed, and may very well have given rise to a number of the genera commonly assigned to Arcestes; this genus then would prove to be polyphyletic, and the subgenera into which it is divided would be given full generic rank.

The oldest of the Arcestidae, Popanoceeras, has been found in the Middle Coal Measures, while Agathiceras, from which it is supposed to have been derived, is not known below the Upper Coal Measures. Agathiceras probably came from either Paralegoceras or Schistoceras, although the latter genus is not known at present to antedate it. But in Gastrioceras, Paralegoceras, Schistoceras, Shumardites, Waagenoceras we have a line of descent in which the geologic sequence, the transitions of the adult forms, and the individual ontogeny are all in perfect accord.

Since these Arcestidae are so well represented in the American Coal Measures, and are unknown elsewhere in the world below the Permian, they may be considered as having originated in the American region, and to have reached the rest of the world afterwards by migration.

Suess' years ago formulated the hypothesis that the appearance of ammonites in the Mediterranean region at the beginning of Permian time marked an invasion of tropical forms from a supposed southern region. But the evidence brought forward in this paper shows clearly that the Arcestidae need not have come from this supposed southern region, especially as we do not know anywhere in southern Paleozoic deposits members

of the Arcæstidae older than the Permian. Karpinsky* has shown that Medlicottia came directly from Pronorites, which is known in the Lower Carboniferous in both Europe and America. Thus the whole argument for a Permian migration from the Southern to the Northern Hemisphere falls to the ground.

The Paleozoic Cyclolobidae are known at present only in Texas, the Mediterranean region, and in India. The Paleozoic Popanoceratidae are known in these regions (with the exception of India), in the Ural Mountains in Russia, and one form, Agathiceras f. micromphalum Morris, has been described from the Permian of Australia. But since both stocks appear in the Coal Measures of America, and since their ancestor, Paralegoceras, is known in America, even in the Lower Carboniferous, both Cyclolobidae and Popanoceratidae probably originated in the American waters and reached the rest of the world by migration at a later date. Their differences of distribution do not, therefore, argue for climatic differences, but rather for greater hardihood of the Popanoceratidae, which is borne out by the fact not only that they migrated as far from their point of origin as Russia on the one side and Australia on the other, but also that they persisted with but little change as late as the Middle Trias.

Family POPANOCERATIDÆ.

Genus Agathiceras Gemmellaro.

To the writer it seems wiser to keep Agathiceras separate from Adrianiites, because the former is a more primitive type, even though there should be a perfect gradation between the two groups. Two American species of Schistoceras have been placed under Agathiceras; but those species differ from the type in having an extra pair of lateral lobes, and in not possessing the unusually strong development of the spiral lines, so characteristic of all species of Agathiceras. Another characteristic worth noting is that in Schistoceras the lobes and saddles are long, pointed, and tongue-shaped, while in Agathiceras they are short and spatulate.

*Ammoniten der Artinsk-Stufe, p. 86.
Agathiceras ciscoense Smith, sp. nov.

Pl. XXI, figs. 17-19.

In the U. S. National Museum is deposited a specimen that meets all the requirements of the genus Agathiceras, the type of A. ciscoense sp. nov.

This species is rather high-whorled, with rounded venter and flattened sides. The umbilicus is closed, and thus narrower than in Paralegoceras and Schistoceras. The surface has constrictions, and is ornamented with very strong spiral lines or ridges narrower than the intermediate furrows, as in European species of this genus. It, however, lacks the network of fine cross lines of growth seen on Schistoceras, and this difference may turn out to be one of the criteria for the separation of the two genera.

The septa resemble those of Schistoceras in number and general shape, but the lobes are rounded and not pointed. The siphonal saddle is notched. The four lateral saddles are rounded and entire, spatulate in shape, while the four external lobes are constricted and tongue shaped.

This species resembles A. suessi Gemmellaro, of the Permian Fusulina limestone of Sicily, but is slightly more compressed. This difference might not be more than individual if the association and range of the two were the same, but in view of the great separation and differences in faunal association it must be specific. A. uralicum occurs in the Upper Carboniferous limestone of the Ural Mountains, but does not resemble A. ciscoense except in a general way.

Occurrence.—In the Upper Coal Measures, Cisco formation, of Graham, Young County, Tex., associated with a typical Missourian fauna. Only a single specimen is known, deposited in the U. S. National Museum (No 27199), collected by A. B. Gant.

Dimensions of the specimen figured:

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>35</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>19</td>
</tr>
<tr>
<td>Height of last whorl from the preceding</td>
<td>12</td>
</tr>
<tr>
<td>Width of last whorl</td>
<td>14</td>
</tr>
<tr>
<td>Involution</td>
<td>7</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>(closed)</td>
</tr>
</tbody>
</table>
Genus Popanoceras Hyatt.

This genus was established by Hyatt to include involute, slightly compressed forms, with almost closed umbilicus and little sculpture. The saddles are rounded and entire; the external lobes, four or more in number on each side, are serrated, either bifid or trifid.

The type is Goniatites kingianus M. V. K., from the Artinsk beds of the Permian of the Ural Mountains. Several Triassic species have usually been classed under this group, but they are now placed under Parapopanoceras Haug, which differs from Popanoceras in having the lobes distinctly serrated, with the denticulations encroaching on the saddles.

Popanoceras ganti Smith, sp. nov.

Pl. XXI, figs. 14-16.

This species is involute, with broadly rounded venter and slightly flattened sides, very involute and close-coiled, with umbilicus almost closed. The shell has fine cross lines of growth, slightly curved forward, and five sharply defined, backward-curving constrictions on the last whorl, parallel to the cross striae. The septa are typical of Popanoceras, and are divided into numerous lobes and saddles. The external lobes are five in number on each side, and the internal are five on each side, with an undivided antisiphonal. The saddles are all rounded and entire, the lobes all denticulate. The external lobe is short and bifid, the lateral lobes all trifid. The siphonal saddle is notched by a shallow indentation. The shape and number of the internal lobes could be seen, but it could not be ascertained whether or not they are denticulate.

Affinities.—Popanoceras ganti resembles slightly P. parkeri Heilprin, but differs from it in being somewhat more compressed laterally in the shorter lobes and saddles, and in having the first lateral lobe trifid instead of bifid. It is thus a more specialized form than P. parkeri, but simpler than P. walcotti White of the Permian, from which form it differs in the smaller number and greater simplicity of its lobes. It may possibly be an intermediate form in the genetic series of P. parkeri and P. walcotti. This

species has only a generic resemblance to the forms from the Ural Mountains and the Fusulina limestone of Sicily, all of which belong to the Permian, and are therefore usually more complex in development.

Dimensions of the figured specimen:

- Diameter: 25 mm
- Height of last whorl: 14.5 mm
- Height of last whorl from the preceding: 6.5 mm
- Width of last whorl: 16 mm
- Involution: 8
- Width of umbilicus: 1.5 mm

This form is more globose and primitive than most of the described species of this genus, and it is next to the oldest known member of *Popanoceras*, the oldest being *P. parkeri* of the Middle Coal Measures.

Occurrence.—Upper Coal Measures, Cisco formation, Graham, Young County, Tex., collected by A. B. Gant. Type No. 27202 in the U. S. National Museum.

Popanoceras parkeri Heilprin.

Pl. XVI, fig. 21.

Shell subglobose involute, abdomen rounded, sides somewhat flattened, whorls high and deeply embracing.

Septa divided into numerous lobes and saddles; the lobes are all digitate, the saddles entire and rounded, except the siphonal saddle, which is notched. Ventral lobe long and bifid; first lateral lobe like the ventral, but shorter and broader; second lateral tripartite, and broader than the first; third lateral on the umbilical shoulders.

Occurrence.—Middle Coal Measures, Strawn formation, Wise County, Tex. F. Frech* refers to these beds as Permian, but they are some distance below the Cisco formation, and associated not with a Permian fauna, but with undoubted Coal Measures species. The Strawn formation lies several thousand feet below the Wichita Permian.

*Die Dyas, p. 510.
Popanoceras walcotti White.

Pl. XXII, figs. 9-11.

The following description is quoted from Dr. White's paper:

Shell discoid, periphery rounded; sides gently convex, the inner volutions almost wholly embraced by the next preceding one, and umbilici are consequently minute. Surface marked with numerous slightly raised and slightly sinuous radiating ridges, apparently indicating stages of growth, which extend continuously from one umbilicus to the other across the periphery; septa showing numerous short lobes and saddles, the former [the saddles] being simple and regularly rounded at the ends and the latter [the lobes] more or less notched or pointed at the extremity. Those near the periphery have sometimes three digitations, and those near the umbilicus are simple and more or less pointed.

The specimen had diameter of about 26 mm. and was entirely septate, hence the body chamber and aperture are unknown.

Occurrence.—Permian, military crossing of the Big Wichita River, Baylor County, Tex.

Family CYCLOLOBIDÆ.

Genus Shumardites Smith, gen. nov.

The type is Shumardites simondsi, sp. nov. Form subglobose, rather evolute, whorls highly arched, helmet-shaped, deeply embracing. Abdomen broadly rounded, sloping in a gentle curve to the abrupt umbilical shoulders. Umbilicus broad and deep, exposing the shoulders of the inner whors. Surface nearly smooth, except for a few obscure constrictions and traces of ribs on the umbilical border.

Septa complex, divided into numerous lobes and saddles; saddles all rounded and constricted, lobes partly bifid, and becoming slightly ammonitic. Ventral lobe divided by a bottle-shaped siphonal saddle, the two lobes thus formed being unsymmetrically divided by a rather deep cleft; first lateral lobe similarly divided; second lateral lobe mucronate and tending to become trifid; third lateral lobe slightly divided; fourth lateral lobe on the umbilical shoulder, narrow and pointed; a fifth lobe stands on the umbilical border. Internal septa complex, consisting of a trifid
antisiphonal lobe, bifid first lateral lobe, and undivided second lateral lobe. Internal saddles rounded like the external.

In youth the form of the whorls is gastrioceran, like *Gastrioceras globulosum* Meek and Worthen, and *G. suberum* Miller and Gurley; the constrictions, form of the whorls, and the obscure traces of umbilical nodes all point to a gastrioceran ancestor, but the septa show a transition to the primitive Arecestida. A small specimen showed gastrioceran characters at diameter of 7 mm., and those of *Schistoceras* at diameter of about 10 mm., but the transition to *Shumardites* takes place very quickly toward maturity.

In form this genus is a goniatite, but the septa have already made the transition to the ammonite stage of development; it might be placed with the Glyphioceratidae, because of the gradation through *Gastrioceras, Paralegoceras*, and *Schistoceras*; but it is the most primitive of the *Arecestes*-like forms, and might with equal propriety be classed with the Arecestida. The nearest known genus is *Hyatoceras* Gemmellaro, of the Sicilian Permian, but *Shumardites* has simpler septa than that genus, and may very possibly be the ancestor of it. The arrangement and shape of the lobes in *Waagenoceras* and other similar genera show that they have developed out of some genus like *Shumardites*. Now, since *Cyclolobus, Waagenoceras*, and *Hyatoceras* all show a common ancestry in *Shumardites* or in some similar form, it is proper to group them all under the family *Cyclolobidae* of Zittel, but excluding from this family the genera *Lobites, Stacheoceras, Popanoceras, Procladiscites, Megaphyllites*, and *Monophyllites*. Since *Adriunites, Popanoceras*, and *Stacheoceras* all seem to have been derived from *Agathiceras*, it is proper to class them under the family Popanoceratidae of Hyatt. Both families together would make up the Paleozoic superfamily Arecestidae. But a single species of *Shumardites* is known, *S. simondsi* sp. nov., of the Upper Coal Measures, Cisco formation, or Missourian stage, of Graham, Young County, Tex. The generic name is given in honor of Dr. B. F. Shumard, the first State geologist of Texas.

Shumardites simondsi Smith, sp. nov.

Pl. III, figs. 3–13.

Shell subglobose, breadth equal to more than two-thirds of the diameter; evolute; whorls highly arched, helmet-shaped, twice as wide as high,
deeply embracing, covering two-thirds of the inner volution, and indented to one-half of its height by the inner whorl. Abdomen broadly rounded in a curve that extends almost unchanged to the angular and steep umbilical shoulders. Umbilicus about one-third of the total diameter, deep, and exposing the umbilical shoulders of the inner whorls.

Surface smooth, so far as could be observed on the cast, except that a few constrictions are visible, more common on the inner whorls.

Septa of the lanceolate type, saddles rounded and constricted, lobes also constricted, and pointed. Ventral lobe divided by a notched siphonal saddle not quite so broad as the two divisions of the lobe. The ventral lobe is unsymmetrically divided by a deep cleft or adventitious saddle; the first lateral lobe is smaller than the ventral and is divided in the same unsymmetric way; the second lateral lobe is slightly larger than the first, and is mucronate in shape, showing a tendency to become tripartite; the third lateral lobe is similar to the first, except that it is the reverse of it. A fifth lobe, or auxiliary, sharply pointed and rather long, stands on the umbilical shoulder.

The internal septa consist of a tripartite antisiphonal lobe, a bifid first lateral, and a simple second lateral, with a small auxiliary on the umbilical border.

The siphonal saddle is nearly as broad as the ventral lobes, the first lateral saddle is still broader, while the second and third laterals are narrow; the fourth lateral, just above the umbilical shoulder, is broad and short.

The lobes are not arranged in a straight line across the sides, but in a backward-pointing curve, which would suggest that the lateral lobes are secondary, and have developed out of a single primary lobe; this is borne out by the ontogeny of the species.

Ontogeny.—At the diameter of 7 mm. the whorl is depressed, trapezoidal, and scarcely arched. The cast is marked by frequent deep and curved constrictions, and the septa, as shown on Pl. III, fig. 7, are gastrioceran, although the lateral lobe is beginning to become tripartite. This is the gastrioceran stage.

At diameter of 12 mm. the ventral lobes have become much longer, and the lateral is divided into three nearly equal secondary lobes; at this stage the whorl is more highly arched, and the stage is transitional from Paralegoceras to Schistoceras. The septa of this are shown on Pl. III, fig. 8.
At diameter of 16 mm. (one-half revolution more than at 12 mm.) the three secondary lobes have ceased to show their origin, and are arranged in a gentle curve across the sides, no longer corresponding to the shape of the original lateral. The whorls begin to be more highly arched, and the stage corresponds to *Schistoceras*. The septa at this stage are shown on Pl. III, fig. 9.

At diameter of 22 mm. (one-half revolution more than at 16 mm.) the ventral lobe begins to be divided unsymmetrically by a secondary saddle or notch; the first lateral is affected in the same way; the second lateral becomes strongly mucronate; the third lateral tends to become notched, like the ventral and first lateral. The saddles are all still rounded at this stage; the form of the whorl is as before, and the shell is making the transition from goniatite to ammonite, from the Glyphioceratidae to the Arcestidae; or from a distinctly Paleozoic type to an harbinger of the Mesozoic era. The septa at this stage are shown on Pl. III, fig. 10, and the form of the whorl is shown on Pl. III, figs. 5 and 6, which may be considered as the end of the adolescent, or parameanic, period.

At diameter of 38 mm. (one-half revolution more than at 22 mm.) the ventral lobe is deeply divided on the side toward the umbilicus; the first lateral similarly divided, but reversed; the second lateral slightly tripartite; the third lateral like the first, but reversed. The saddles are deeply constricted, and the general appearance of the lobes is phylloid, and suggestive of *Waagenoceras* and *Hyattoceras*, of which genera *Shumardites* is probably the ancestor. The septa of this, the adult, stage are shown on Pl. III, fig. 11, and the form on Pl. III, figs. 12 and 13.

The ancestry of *Shumardites* is clearly seen in its successive stages through *Gastrioceras*, *Paralegoceras*, *Schistoceras*, and its transition at maturity into the primitive *Arcestes* type. That it is primitive is shown by the fact that it makes this transition at such a large size (20 mm. in diameter), while all the Permian and Triassic forms make this transition shortly after their larval period, and at a very small size, thus illustrating the law of acceleration of development.

No other species is known with which *Shumardites simonsi* may be compared, for this type has not been found in the Paleozoic deposits of other regions.

Occurrence.—In the Upper Coal Measures, Cisco formation, Missourian
stage, of Graham, Young County, Tex., associated with *Gastrioceras globulosum* Meek and Worthen, *G. subaeum* Miller and Gurley, *Schistoceras hildrethi* Morton, *S. hyatti* Smith, *Gonioloboceras welleri* Smith, *Dimorphoceras texanum* Smith, *Agathiceras ciscoense* Smith, *Schuchertites grahamii* Smith, *Popanoceras ganti* Smith, and a typical brachiopod and pelecypod Coal Measures fauna. The beds in which these fossils were obtained lie about a thousand feet below the Wichita Permian beds. This is a remarkable assemblage of ammonites to be found below the Permian, but it will be noted, by reference to the plates accompanying this paper, that they are all primitive or transitional forms, such as one would expect to find in the Upper Coal Measures.

The type figured on Pl. III, figs. 11–13, was collected by the writer in the Cisco beds on Salt Creek, in the outskirts of Graham, Tex. Dimensions of the type:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Millimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter, about</td>
<td>38</td>
</tr>
<tr>
<td>Height of last whorl</td>
<td>14</td>
</tr>
<tr>
<td>Height of last whorl from preceding</td>
<td>7</td>
</tr>
<tr>
<td>Width of last whorl</td>
<td>26</td>
</tr>
<tr>
<td>Involution</td>
<td>24</td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td>14</td>
</tr>
</tbody>
</table>

The type is in the collection of the writer, deposited in the geologic collection of Leland Stanford Junior University, California.

In the U. S. National Museum are three specimens (two of 27203 and one of 27201), which were also used in preparing the diagnosis of the genus and species, and in illustrating the development of the septa.

The specific name is given in honor of Prof. F. W. Simonds, of Austin, Tex.

Genus Waagenoceras Gemmellaro.

This is the most complex of American Paleozoic ammonoids, and the only one that in the strictest sense may be said to have developed entirely beyond the limits of the goniatites and to have become a true ammonite in all its characters.

All known species of this genus have a compact *Arcestes*-like shape, with rounded whorl and moderately narrow umbilicus. The septa are complex, ammonitic and phylloid, the lobes and saddles numerous, and all digitate. The internal divisions are almost as numerous as the external, in this respect strongly resembling *Arcestes*.
The shell is smooth, except for the transverse striae of growth and the periodic constrictions on sulcations. This genus was first described by Gemmellaro from the Permian of Sicily, and has been found elsewhere only in Texas; it seems to be lacking in the Productus limestone of the Salt Range of India, and in the Hungarites beds of the Upper Permian of Armenia. On this account some writers have been inclined to regard Waagenoceras as a southern genus. But the evidence brought forward in this paper shows that it probably developed in the American region from the gastrioceran stock of the Glyphioceratidae, in the genetic series Gastrioceras, Paralegoceras, Schistoceras, Shumardites, Waagenoceras.

The phylliform septa, the globose whorls, and the constrictions all show that the genus could not have been derived from the Popanoceratidae, in which the septa are never phylliform, and the whorls usually laterally compressed. Shumardites, described in this paper, shows an approach to Waagenoceras, in the form of the whorls, the constrictions, and the beginning of phylliform digitation of the septa, and through this genus the family history can readily be traced back to Gastrioceras.

Waagenoceras cumminsi White.

Pl. XXII, figs. 4–8.

Shell subglobose somewhat compressed laterally, with broadly rounded venter. Umbilicus rather deep and narrow, with small portion of the inner whorls showing. Cross section of whorl helmet-shaped, with greatest breadth at one-third of the height from the umbilical shoulders. Shell nearly smooth, with fine cross striae, and fine spiral lines occasionally visible. Septa complex, the numerous lobes and saddles being all digitate; the siphonal lobe is deeply divided by a rather narrow siphonal saddle, the lateral lobes are three in number, and in addition to these there are three auxiliaries.

The species seems to have reached a diameter of at least 50 mm., but only fragments of the larger ones have been found. The nearest known relative is *Waagenoceras stachei* Gemmellaro, from the Permian Fusulina limestone of Sicily.

Occurrence and locality—Permian, Wichita stage, military crossing of the Big Wichita River, Baylor County, Tex.

Waagenoceras hilli Smith, sp. nov.

Pl. XXVII.

This species is more compressed laterally than *Waagenoceras cumminsi* White, has narrower umbilicus, and higher whorl, but the whorls are less deeply embracing, the involution being less than one-half of the height of the whorl. There are five sinuous constrictions on the last revolution, which bend sharply backward on the abdomen. The surface is otherwise smooth, so far as can be ascertained from the casts.

The septa are much more complex than on *W. cumminsi* at the same size, the lobes and saddles are all deeply divided; the saddles are phylliform, with three leaf-like divisions; the lobes are digitate, with three principal finger-like extensions, resembling the septa of *Phylloceras*, and being more complex than those of any other species yet known of *Waagenoceras*. There are seven lobes visible outside of the umbilicus, the ventral, five laterals, and one on the umbilical shoulder, being one less than is seen on the species described by Gemmellaro" from the Permian of Sicily. The agreement with that genus is not perfect, but the Texas species is nearer to that than to any other, and the differences are hardly sufficient for the discrimination even of a subgenus.

Dimensions of the figured specimen.

<table>
<thead>
<tr>
<th></th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td></td>
</tr>
<tr>
<td>Height of last whorl</td>
<td></td>
</tr>
<tr>
<td>Height of last whorl from the preceding</td>
<td>31</td>
</tr>
<tr>
<td>Width of last whorl</td>
<td></td>
</tr>
<tr>
<td>Involution</td>
<td></td>
</tr>
<tr>
<td>Width of umbilicus</td>
<td></td>
</tr>
</tbody>
</table>

This specimen was septate throughout, so the length of the body chamber, and the full size of the shell could not be determined; but in the

"Fauna calc. Fusulina, pp. 9-12."
Arcestidae the length of the body chamber is at least a revolution, and this would almost double the size of the complete form.

None of the species described by Gemmellaro are comparable with this one; they are all more depressed and have less complicated digitation of the lobes and saddles. The septa bear a greater resemblance to *Hyattoceras* Gemmellaro, but that genus has the umbilicus entirely closed and lacks the constrictions or varices; also its saddles, while phylliform, are distinctly bipartite and not tripartite as in *Waagenoceras hilli*.

Occurrence.—*Waagenoceras hilli* was collected by W. F. Cummins in the Double Mountain formation, Upper Permian, at the falls on Salt Croton Creek, Kent County, Tex., associated with *Popanoceras*, *Medlicottia*, and other forms possibly identical with those described by Dr. C. A. White from the Wichita division. The type specimen was loaned the writer by the late Prof. Alpheus Hyatt.

The name is given in honor of Mr. R. T. Hill, of the U. S. Geological Survey, in recognition of his contributions to the geology of Texas.

SPECIES NOT GENERICALLY IDENTIFIED.

Goniatites? colubrellus Morton.

Shell discoidal, evolute, numerous convex volutions, laterally compressed. Three or four constrictions to a revolution.

Occurrence.—Upper Coal Measures, Cambridge, Guernsey County, Ohio.

Goniatites? minimus Shumard.

Shell subglobose, involute, deeply embracing; breadth equal to three-fourths of diameter. Abdomen and sides strongly rounded. Umbilicus minute, not showing the inner whorls. Surface ornamented with exceedingly fine spiral lines; and obscure nodes, visible on the umbilical shoulders.

Occurrence.—Middle Coal Measures, near Dovers Landing, Missouri.

Fauna calc. Fusulina, p. 12.

Ball. U. S. Geol. Survey No. 77.
CARBONIFEROUS AMMONOIDS OF AMERICA.

Goniatites? parvus Shumard.

Shell discoidal, moderately compressed, strongly embracing, the inner whorls being concealed by the outer. Umbilicus very small. Abdomen strongly arched, sides gently convex; whorl higher than wide. Surface marked with a few obscure folds, strongest near the aperture.

Occurrence.—Upper Coal Measures, Willow Spring, on Santa Fé road, Kansas.

Goniatites? politus Shumard.

Shell very much compressed laterally, thin, discoidal, involute, deeply embracing, the inner whorls being concealed by the outer. Abdomen strongly rounded, smooth; sides evenly and gently convex, greatest thickness being about the middle of the whorl. Surface marked with obscure, sinuous folds and minute striae of growth, crossed by fine spiral lines.

Occurrence.—Middle Coal Measures, Lexington, Mo.

Species named but not described.

Goniatites? sulciferus Winchell.

No description given, but the suggestion is made that it may be a variety of "*Goniatites* propinquus* Winchell.

Species not ammonoids.

"Ammonites" bellicosus Morton.

This species is probably a nautiloid, but can not be determined.

Occurrence.—Upper Coal Measures, Cambridge, Guernsey County, Ohio.
Doubtful Species.

Systematic Position Doubtful.

Family Neoicoceratidae.

Genus Neoicoceras Hyatt.

Neoicoceras elkhornense Miller and Gurley.

Plate XVI, figs. 9-11.

This species was taken by Hyatt as the type of a new genus and family of goniatites; the writer has examined the type specimen in the paleontologic collection of the Walker Museum, University of Chicago, and is of the opinion that it is not an ammonoid at all, but a nautiloid.

Occurrence.—Middle Coal Measures, Elkhorn Creek, Kentucky.
Table of the species.

<table>
<thead>
<tr>
<th>Species</th>
<th>Lower Carboniferous</th>
<th>Coal Measures</th>
<th>Permian</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ouachita:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Louis: Cluster:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower Coal Measures</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Middle Coal Measures</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper Coal Measures</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Warmia:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacrites carbonarius Smith, sp. nov.</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag gravidites opinus White and Whitfield</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonisococeras ? monroense Worthen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prodracites gorbyi Miller</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prodracites ornatus Smith, sp. nov.</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prodracites procarnatus Smith and Weller</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prodracites cycloclus Phillips, var. arktonoseensis Smith</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prodracites siebenbachi Smith, sp. nov.</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mellicottia copei White</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Schnurberthia grahami Smith, sp. et gen. nov.</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Prodracites ? compactus* Meek and Worthen</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prodracites gregii Miller</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prodracites gayleri Smith, sp. nov.</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prodracites houghtonii Winchell</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prodracites ? louisicensis* Rowley</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prodracites tymii Meek and Worthen</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prodracites marshallensis Winchell</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prionaceras ? androesi* Winchell</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prionaceras ? brownense* Miller</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prionaceras ? oklahoma* Winchell</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pericyclus blairi Miller and Garley</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Pericyclus princeps De Koninck</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphioceras calix Phillips</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Glyphioceras diadematus* Goldfuss</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphioceras ? indiansum* McChesney</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphioceras levirahum* Miller and Faber</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphioceras ? pingunan* Winchell</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonioceras choctawensis* Shumard</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonioceras crenistria* Phillips</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Gonioceras caminii* Hyatt=G. striatus Sowerby)</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonioceras greenevostiensis Miller and Garley</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Gonioceras incus* Hyatt=G. crenistria* Phillips)</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonioceras kentuckyensis* Miller</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonioceras lanatus Miller and Garley</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonioceras normoni* Smith, sp. nov.</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonioceras spicifer* Martin</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonioceras striatus* Sowerby</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonioceras subcircolatus* Miller</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Lower Carboniferous</td>
<td>Upper Carboniferous</td>
<td>Permian</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Gastroceras bowmani Smith</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastroceras carinatum von Buch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastroceras compressum Hyatt</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastroceras elongata Gabb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastroceras excludens Meek</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Gastroceras globularum Meek and Worthen</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Gastroceras illinoense Miller and Gurley</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastroceras kansasense Miller and Gurley</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastroceras kingi Hall and Whitfield</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastroceras listeri Martin</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastroceras montgomeryense Miller and Gurley</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastroceras natunense Cox</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastroceras occidentale Miller and Faber</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraleptoceras baylorense White</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Paraleptoceras lovenense Meek and Worthen</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Paraleptoceras nevadense Smith</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraleptoceras texarense Shumard</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schistoceras fallaxense Miller and Gurley</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schistoceras hiltrethi Morton</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schistoceras hayati Smith</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schistoceras missouriense Miller and Faber</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agnides discoidalis Smith, sp. nov</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agnides jessica Miller and Gurley</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agnides? rosaligheri Winchell</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agnides? scotiensis de Koninck</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agnides? scotiensis Miller and Faber</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agnides? shumardianus Winchell</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrostrocerus? holmei Swallow</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrostrocerus? indianaense Miller</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrostrocerus? osageensis Swallow</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Macrostrocerus oweni Hall</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrostrocerus parallelus Hall</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Macrostrocerus whitei Hyatt=M. oweni Hall)</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genioloboceras? alli Winchell</td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
CARBONIFEROUS AMMONOIDS OF AMERICA.

Table of the species—Continued.

<table>
<thead>
<tr>
<th>Species</th>
<th>Lower Carboniferous</th>
<th>Coal Measures</th>
<th>Permian</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kinderhook</td>
<td>Osgo</td>
<td>St. Louis-Mississipi</td>
</tr>
<tr>
<td>Gonioloboceras goniolobum Meek</td>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>Gonioloboceras? limatius Miller and Faber</td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Gonioloboceras welkeri Smith, sp. nov</td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Dimorphoceras texanum Smith, sp. nov</td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>? Milleroceras parrishi Miller and Gurley</td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Agathicerus casseus Smith, sp. nov</td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Poposoceras gaudi Smith, sp. nov</td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Poposoceras parkeri Heilprin</td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Poposoceras walcotti White</td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Shumardites simondai Smith, sp. et gen. nov</td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Wangenoceras conninsi Hyatt</td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Wangenoceras hilli Smith, sp. nov</td>
<td></td>
<td></td>
<td>×</td>
</tr>
</tbody>
</table>

Species of which the genera could not be determined.

Goniatites caulicrella Morton
Goniatites parvus Shumard
Goniatites politus Shumard
(? *Goniatites veliferus* Winchell = *G. propinquus* Winchell)

Probably not ammonoids.

Neoiceras elkhornense Miller and Gurley
"Ammonites" helicosus Morton
BIBLIOGRAPHY.

MEMOIRS IN WHICH AMERICAN CARBONIFEROUS GONIATITIES ARE DESCRIBED.

Bernard, F. Traité de Paléontologie. 1895.

Beyrich, E. De Goniatitès in Montibus Rhenanis occurrentibus. 1837.

— Beiträge z. Kenntniss Versteinerungen rheinischen Uebergangsgebirges. 1837.

Bigsby, J. J. Thesaurus Devonico-Carboniferus. 1878.

CARBONIFEROUS AMMONOIDs OF AMERICA.

HAUG, E. Études sur les Goniatites.

HEILPRIN, A. On a Carboniferous ammonite from Texas.

HERRICK, C. L. Observations upon the so-called Waverly group of Ohio.

HYATT, A. Cephalopoda.
In Eastman’s transl. Zittel’s Text-Book of Palaeontology, 1900.

Carboniferous cephalopods.

Carboniferous cephalopods. Second paper.

Genera of fossil cephalopods.

KARLINSKY, A. Ueber die Ammoniten der Artinsk-Stufe.

KONINCK, L. G. de. Description des animaux fossiles qui se trouvent dans le terrain carbonifère de Belgique. 1842-44.

Famme du calcaire carbonifère de la Belgique. 1880.

MARTIN, W. Petrifacata Derbiensis. 1899.

McCHESNEY, J. H. Descriptions of new species of fossils from the Palaeozoic rocks of the Western States. 1869.

Plates illustrating in part the new species of fossils from the Palaeozoic rocks of the Western States, etc. 1865.

Descriptions of fossils from the Palaeozoic rocks of the Western States.

McCoy, F. British Palaeozoic fossils. 1855.

MEEK, F. B. Palaeontology.

Notice of a very large goniatite from eastern Kansas.

MEEK, F. B. and WORTHEN, A. H. Descriptions of new Carboniferous fossils from Illinois and other Western States.

Remarks on the age of the Goniatite limestone at Rockford, Indiana, etc.

Descriptions of new species of Crinoidea [etc.] from Illinois.

Descriptions of invertebrates from the Carboniferous system.
MEEK, F. B. and WORTHEN, A. H. Descriptions of invertebrates from the Carboniferous system.
——— Descriptions of new Carboniferous fossils from Illinois and other Western States.

MILLER, S. A. North American Geology and Paleontology. 1889.
——— Paleontology.
——— Paleontology.

MILLER, S. A. and FABER, C. Descriptions of some Subcarboniferous and Carboniferous Cephalopoda.

MOISSISOVICS E. von. Die Cephalopoden der Meditteranen Triasprovinz.

MORTON, S. G. Appendix. Being a notice and description of the organic remains embraced in the preceding paper.
 Appendix to S. P. Hildreth’s paper on the bituminous coal deposits of the Valley of the Ohio.

 Vol. II. Paléontologie. 1845.

——— Geologie von Oberschlesien. 1870.

ROEMER, F. ADOLF. Beiträge zur geologischen Kenntniss der nordwestlichen Harzgebirges.

ROWLEY, R. R. Description of a new genus and five new species of fossils from the Devonian and Subcarboniferous rocks of Missouri.
 Am. Geologist, Vol. XVI, No. 4, 1895.

SANDBERGER, F. Die Versteinerungen des rheinischen Schichtensystems in Nassau.
 1850-56.

SHUMARD, B. F. Description of new fossils from the Coal Measures of Missouri and Kansas.
——— Paleontology.
 Geol. Survey Missouri, 1855.
——— Descriptions of new Paleozoic fossils.

SMITH, J. P. Marine fossils from the Coal Measures of Arkansas.
CARBONIFEROUS AMMONOIDS OF AMERICA.

Jour. Geol., Vol. VI, No. 3, 1900.

Jour. Geol., Vol. VI, No. 3, 1900.

Steinmann, G., and Döderlein, L. Elemente der Paläontologie. 1890.

Swallow, G. C. Descriptions of new fossils from the Carboniferous and Devonian rocks of Missouri.

Tzwetaev, M. Nantiloidea et Ammonoida de la section inférieure Calcaire Carbonifère Russie.

Verneuil, E. de. Note sur le parallélisme des roches des dépôts paléozoïques de l’Amérique Septentrionale avec ceux de l’Europe, etc.

Waagen, W. Salt Range Fossils.

Weller, Stuart. The Batesville sandstone of Arkansas.

—— Kinderhook Faunal Studies. II. The Fauna of the Chonopectus sandstone at Burlington, Iowa.

—— A bibliographic index of North American Carboniferous invertebrates.

White, C. A. On the Permian formation of Texas.

—— The Texas Permian and its Mesozoic types of fossils.

—— Paleontology. Fossils of the Indiana rocks.

White, C. A., and Whitfield, R. P. Observations on the rocks of the Mississippi Valley, etc.

Winchell, A. Notice on the rocks lying between the Carboniferous limestone of the Lower Peninsula of Michigan and the limestone of the Hamilton group, etc.

—— Notices and descriptions of fossils from the Marshall group of the Western States.

Worthen, A. H. Paleontology.

PLATE III.

Figs. 1 and 2. Schistoceras hildrethi Morton............................... 107
 Upper Coal Measures, Cambridge, Ohio.
Figs. 3-13. Shumardites simonisi Smith, gen. et sp. nov.. 135
 Upper Coal Measures, Cisco formation, Graham, Tex.
 Figs. 3 and 4. Views of young shell, at diameter of 22 mm., showing gastrioceran shape of
 whorl.
 Figs. 5 and 6. Partial restoration of the above specimen.
 Fig. 7. Septa showing gastrioceran character and beginning of division of lateral lobe, at
 diameter of 7 mm., 10 times enlarged.
 Fig. 8. Septa at diameter of 12 mm., transitional from Paralepoceras to Schistoceras; 3.6
 times enlarged.
 Fig. 9. Septa at diameter of 16 mm. (one-half revolution more than fig. 8), 3.6 times
 enlarged. (Septa inverted.)
 Fig. 10. Septa at diameter of 22 mm. (one-half revolution more than fig. 9), 4 times
 enlarged.
 Fig. 11. Septa at 38 mm. (one-half revolution more than fig. 10), showing mature
 characters; drawn from specimen shown in figs. 12 and 13, 1.6 times enlarged.
 Figs. 12 and 13. Type specimen, natural size.

Note.—Figs. 1 and 2 are figs. 40 a and 40 b of Pl. I of Étude sur les Goniatites.

154
CARBONIFEROUS AMMONOIDS.
PLATE IV.

Figs. 1-3. Gonioloboceras goniolobum Meek ... 123
 Coal Measures, New Mexico.
Figs. 4-8. Gastroceras kingi Hall and Whitfield ... 82
Figs. 9-11. Paralegoceras baylorense White ... 99
 Permian, Wichita formation, military crossing of Big Wichita River, Baylor County, Tex.
Figs. 12-14. Paralegoceras iowense Meek and Worthen .. 100
 Middle Coal Measures, Alpine, Iowa.

Note.—Figs. 1-3 are from U. S. Geol. Expl. Fortieth Parallel, Vol. IV, Pt. I, Pl. IX, figs. 5, 5a, 5b.
Figs. 4-8 are from U. S. Geol. Expl. Fortieth Parallel, Vol. IV, Pt. II, Pl. VI, figs. 9-14.
Figs. 9-11 are from Bull. U. S. Geol. Survey No. 77, Pl. II, figs. 1-3.
Figs. 12-14 are from Geol. Surv. Illinois, Vol. II, Pl. XXX, figs. 3a-c.
PLATE V.

<table>
<thead>
<tr>
<th>Figs. 1 and 2. Prionoceras? brownense Miller</th>
<th>Page.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Carboniferous, Kinderhook group, Brown County, Ind.</td>
<td>59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Carboniferous, Kinderhook group, Clark County, Ind.</td>
<td>118</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figs. 5-7. Prolecanites? compactus Meek and Worthen</th>
<th>Page.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle Coal Measures, Menard County, Ill.</td>
<td>52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figs. 8-10. Gastroceras nolinense Cox</th>
<th>Page.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle Coal Measures, Nolin Iron Works, Edmonson County, Ky.</td>
<td>95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fig. 11. Nomismoceras? monroense Worthen</th>
<th>Page.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Carboniferous, St. Louis group, Monroe, Ill.</td>
<td>34</td>
</tr>
</tbody>
</table>

Note.—Figs. 1 and 2 are from Seventeenth Ann. Rept. Geol. Surv., Indiana, Pt. XVIII, figs. 3 and 4.

Figs. 3 and 4 are from Seventeenth Ann. Rept. Geol. Surv., Indiana, Pt. XIX, figs. 2 and 3.

Figs. 5-7 are from Geol. Surv. Illinois, Vol. V, Pt. XXXI, figs. 2 a-c.

Figs. 8-10 are from Geol. Surv. Kentucky, Vol. III, Pt. X, figs. 1, 1a, 1b.

Fig. 11 is from Geol. Surv. Illinois, Vol. VIII, Pt. XXVI, fig. 5.
CARBONIFEROUS AMMONOIDS
PLATE VI.
PLATE VI.

Fig. 1. Gastroceras globulosum Meek and Worthen .. 80
 Middle Coal Measures, near Boles, Ark. Shows the surface markings of the shell.
Figs. 2-5. Goniatites lunatus Miller and Gurley ... 77
 Coal Measures, Elkhorn Creek, Kentucky.
Figs. 6-8. Prolecantites louisianensis Rowley ... 54
 Lower Carboniferous, Kinderhook stage, Louisiana, Mo.
Figs. 9-11. Bactrites carbonarius Smith ... 31
 Lower Carboniferous, St. Louis-Chester stage, Moorefield, Ark.

Note.—Fig. 1 is from Proc. Am. Philos. Soc., Vol. XXXV, Pl. XVIII, fig. 4.
Figs. 2-5 are from Bull. Illinois State Mus. Nat. Hist. No. 11, Pl. V, figs. 2-5.
Figs. 6-8 are after a specimen loaned by the Walker Museum, University of Chicago.
CARBONIFEROUS AMMONOIDS.
PLATE VII.
PLATE VII.

Figs. 1 and 2. Agoniavites optimus White and Whitfield. 32

Lower Carboniferous, Kinderhook stage, Burlington, Iowa.

Fig. 1, outline of the whorl.
Fig. 2, side view.

Note.—These drawings are copied from Dr. Stuart Weller's paper, Kinderhook Faunal Studies, II, The Fauna of the Chonopectus sandstone at Burlington, Iowa: Trans. St. Louis Acad. Sci., Vol. X, No. 3, Pl. VIII, fig. 1; and Pl. IX, fig. 1.

162
PLATE VIII.
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schistoceras missouriense Miller and Faber</td>
<td>111</td>
</tr>
<tr>
<td>2 and 3</td>
<td>Aganides? sciotoensis Miller and Faber</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>Upper Coal Measures, near Kansas City, Mo.</td>
<td></td>
</tr>
<tr>
<td>4, 5, and 5a</td>
<td>Prolocanites greenii Miller</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Lower Carboniferous, Osage stage, Sciotoville, Ohio.</td>
<td></td>
</tr>
<tr>
<td>6 and 7</td>
<td>Gastroceras occidentale Miller and Faber</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Lower Carboniferous, Kinderhook stage, New Albany, Ind.</td>
<td></td>
</tr>
<tr>
<td>8 and 9</td>
<td>Gonioleoceras limatuum Miller and Faber</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>Middle Coal Measures, Elkhorn Creek, Kentucky</td>
<td></td>
</tr>
<tr>
<td>10 and 11</td>
<td>Glyphioceras leviculum Miller and Faber</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Lower Carboniferous, St. Louis stage, Crab Orchard, Ky.</td>
<td></td>
</tr>
</tbody>
</table>

Note.—Figs. 1–3 and 6–11 are taken from Jour. Cincinnati Soc. Nat. Hist., Vol. XIV, Pl. VI.

Figs. 4, 5, and 5a are taken from Seventeenth Ann. Rept. Geol. Surv. Indiana, Pl. X, figs. 5 and 6.
PLATE IX.

Figs. 1-3. Gastroceras compressum Hyatt. .. 86
 Lower Carboniferous, St. Louis-Chester stage, Bend formation, San Saba County, near
 Bend, Tex.
 Specimen Nat. Museum.

Figs. 4-7. Paralegoceras lowense Meek and Worthen. 100
 Lower Carboniferous, St. Louis-Chester stage, Bend formation, near Bend, San Saba
 County, Tex.
 Figs. 4 and 5. Immature shell.
 Fig. 6. Septa at this stage.
 Fig. 7. Enlarged view of the shell at this stage.

Note.—Figs. 1-3 are from Second Ann. Rept. Geol. Surv. Texas, figs. 57-59 (p. 355).
 Figs. 4-7 are from Fourth Ann. Rept. Geol. Surv. Texas, figs. 52-55 (p. 474).
CARBONIFEROUS AMMONOIDS.
PLATE X.
PLATE X.

Figs. 1–11. Goniatites striatus Sowerby (=Glyphioceras communis Hyatt) 80
 Lower Carboniferous, St. Louis-Chester stage, Bend formation, 5 miles west of Lampasas, Tex.
 Figs. 1 and 2. Adolescent stage.
 Fig. 3. Shell at this stage.
 Figs. 4 and 5. Early adolescent stage.
 Fig. 6. Shell at this stage.
 Figs. 7 and 8. Early adolescent stage.
 Figs. 9 and 10. Fully matured stage.
 Fig. 11. Shell at this stage.

Figs. 12–16. Goniatites crenastria Phillips (=Glyphioceras incisum Hyatt) 68
 Lower Carboniferous, St. Louis-Chester stage, Bend formation, near Richland Springs, San Saba County, Tex.
 Figs. 12 and 13. Early adult stage.
 Figs. 14 and 15. Cross strie on mature shell.
 Fig. 16. Restoration of the form after fig. 15.

Figs. 17–19. Gastroceras entognorum Gabb ... 87
 Lower Carboniferous, St. Louis-Chester stage, Bend formation, 5 miles west of Lampasas, Tex.
 Figs. 17 and 18. Front and side view.
 Fig. 19. Shell enlarged.

Note.—This plate is taken from Fourth Ann. Rept. Geol. Surv. Texas, Pl. XLVII.
CARBONIFEROUS AMMONOIDS.
PLATE XI.

Figs. 1–4. GASTROICERAS CARBONARIUM von Buch. .. 84

Middle Coal Measures, near Boles, Scott County, Ark.
Fig. 1. Side view of a composite artificial cast, from three specimens.
Fig. 2. Side view of a septate fragment.
Fig. 3. Cross section of whorl.
Fig. 4. Sutures.

Figs. 5–7. Pronorites siebenthali Smith, sp. nov. .. 47

Middle Coal Measures, near Boles, Scott County, Ark.
Fig. 5. Side view of septate fragment.
Fig. 6. Cross section of whorl.
Fig. 7. Sutures.

Figs. 8–13. GASTROICERAS BRANNEI Smith .. 83

Lower Carboniferous, Chester stage, Pilot Mountain, Carroll County, Ark.
Fig. 8. Side view.
Fig. 9. Front view.
Fig. 10. Rear view.
Fig. 11. Cross section.
Fig. 12. Sutures of adult, twice enlarged.
Fig. 13. Sutures at diameter 23 mm., twice enlarged.

Note.—Figs. 1–7 formed Pl. XX, Proc. Am. Philos. Soc., Vol. XXXV.
CARBONIFEROUS AMMONOIDS.
PLATE XII.
Plate XII.

Figs. 1, 2. Pronorites prepermicus Karpinsky (to show the young stages) 44
 Fig. 1. First two sutures.
 Fig. 2. Embryo chamber.

Fig. 3. Pronorites cyclolobus Phillips ... 44
 Fig. 3. Sutures, twice enlarged.

Figs. 4-9. Paralegoceras newsomi Smith sp. nov .. 101
 Lower Coal Measures, Morrillton, Ark.
 Fig. 4. Side view, partly restored.
 Fig. 5. Front view.
 Fig. 6. Side view of inner whorl taken out of the large specimen shown in fig. 1.
 Fig. 7. Front view.
 Fig. 8. Sutures taken from the inner whorl of 25 mm. diameter.
 Fig. 9. Sutures on the outer whorl.

Fig. 10. Glyphioceras diadema Goldfuss, showing development of the sutures 63
 a. First suture.
 b. Second suture.
 c. Third suture.
 d. At 1.25 mm. diameter.
 e. At 2.25 mm.
 f. Adult.

Fig. 11. Tornoceras rectorsum von Buch ... 73
 a. First suture.
 b. Second suture.
 c. At 1.75 mm. diameter.
 d. At 2.50 mm.
 e. At 10 mm., adult.

Figs. 12-15. Pronorites cyclolobus Phillips variety arkansensis Smith 43
 Lower Carboniferous, Chester stage, Pilot Mountain, Carroll County, Ark.
 Fig. 12. Side view.
 Fig. 13. Rear view.
 Fig. 14. Front view.
 Fig. 15. Sutures.

Note.—Figs. 1-3 were part of Pl. XXIII, Proc. Am. Philos. Soc., Vol. XXXV; figs. 1 and 2 are after Karpinsky, Ammonien der Artinsk-Stufe, Pl. 1, fig. 2, e, f, g; fig. 3 is after Phillips, Geol. Yorkshire, Pt. II, Pl. XX, fig. 42.
Figs. 4-11 were part of Pl. XIX, Proc. Am. Philos. Soc., Vol. XXXV; fig. 10 is after Branco, Palaeontographica, Vol. XXVII, Pl. IV, fig. 1; fig. 11 is after Branco, Palaeontographica, Vol. XXVII, Pl. V, fig. 7.
Figs. 12-15 were part of Pl. XXIV, Proc. Am. Philos. Soc., Vol. XXXV.
PLATE XIII.
PLATE XIII.

Figs. 1–5. Proboscites cycloides Phillips Page. 43
Ural Mountains.
Fig. 1. Side view.
Fig. 2. "Cross section of a volution, Ibergicerus stage."—Karpinsky.
Fig. 3. "Cross section of a volution, Paraprotocerites stage."—Karpinsky.
Fig. 4, a, b. Natural size.
Fig. 5, a–f. Showing development of the sutures, from the Ibergicerus to the Proboscites stage.

Figs. 6–15. Gastroceras listeki Martin 93
Middle Coal Measures, Boles, Ark.
Fig. 6. Side view.
Fig. 7. Rear view.
Fig. 8. Front view. Artificial cast, magnified twice.
Fig. 9. Side view.
Fig. 10. Side view, largest specimen.
Fig. 11. Cross section of whorl.
Fig. 12. Artificial cast.
Fig. 13–15. Development of the sutures.

CARBONIFEROUS AMMONOIDS.
PLATE XIV.

(All figures on this plate are forty times enlarged.)

Page. 68

Goniatites crenastria Phillips. ...

Figs. 1, 2. Protoconch.
Fig. 1. From above.
Fig. 2. From front; diameter 0.46 mm.

Figs. 3-5. Protoconch of same or a nearly related species from Scott County, Ark.
Fig. 3. From above.
Fig. 4. From front.
Fig. 5. From side.

Figs. 6-8. Protoconch with first two sutures.
Fig. 6. From above.
Fig. 7. From front.
Fig. 8. From side.

Figs. 9, 10. Larval stage, diameter of 0.74 mm., protoconch and one-half of first whorl, showing the first four sutures, from phylembryonic to the paranepionic substage.
Fig. 9. From side.
Fig. 10. From front.

Figs. 11, 12. Larval stage, diameter of 0.92 mm., first whorl, showing first eight sutures, and transitions from the metaneopionic (Amurecestes stage), through paranepionic (Para-
doceras stage) to anameonic (Prionoceras) stage.
Fig. 11. From front.
Fig. 12. From side.

Note.—This was Plate XIII, Proc. Cal. Acad. Sci., 3d series, Geology, Vol. 1. All specimens figured on this plate, except figs. 3, 4, 5, came from the Lower Carbonifer-
own, St. Louis-Chester stage, Moorefield, Ark.
CARBONIFEROUS AMMONOIDS
PLATE XV.
PLATE XV.

(All figures on this plate are twenty times enlarged, except fig. 9, which is twice natural size.)

Goniatites crenistria Phillips ... 68

Figs. 1, 2. Adolescent stage, 1½ whorls, diameter of 1.29 mm., last whorl is ananeanic
(Prionoceras stage) and shows transition from paranepionic.
 Fig. 1. Front.
 Fig. 2. Side.

Figs. 3, 4. Adolescent stage, diameter of 1.37 mm., 1½ whorls, Prionoceras stage.
 Fig. 3. From front.
 Fig. 4. From side.

Figs 5, 6. Adolescent stage, diameter of 1.64 mm., 2½ whorls, Prionoceras stage.
 Fig. 5. From front.
 Fig. 6. From side.

Figs. 7, 8. End of adolescent stage, diameter of 2.25 mm.; 2½ whorls; transition from Prionoceras to Goniatites in the division of the ventral lobe, and beginning rounding of the whorl.
 Fig. 7. From front.
 Fig. 8. From side.

Fig. 9. Early adult stage, diameter of 15 mm.

Note.—This was Pl. XIV, Proc. Cal. Acad. Sci., 3d series, Geology, Vol. 1. All specimens figured on this plate came from the Lower Carboniferous, St. Louis-Chester stage, Moorefield, Ark.
CARBONIFEROUS AMMONOIDS
PLATE XVI.

Fig. 1. Goniatites crenistria Phillips, showing development of septa. Lower Carboniferous, St. Louis-Chester stage, Moorefield, Ark.

a. First septum, ananepionic.
b. Second septum, metanepionic.
c. Third septum, metanepionic.
d. Fourth septum, paranepionic.
e. Fifth septum, one-half revolution, diameter 0.74 mm., paranepionic.
f. Eighth septum, one revolution, diameter 0.92 mm., ananepionic (Prionoceras).
g. Ananepionic septum, 1 ½ revolutions, diameter 1.29 mm.
h. Septum at 1 ½ whorls, diameter 0.74 mm.
i. Septum at 2 2/5 mm., 2 ½ revolutions, transitional from Prionoceras to Goniatites.
j. Septum at 15 mm., early adult. All figures magnified 20 times, except j, which is twice enlarged.

Fig. 2. Gastrioceras excelsum Meek. Middle Coal Measures, Pope County, Ark.

a. Septa.
b. Cross section of whorl.

Fig. 3. Muensteroceras parallellum Hall. Lower Carboniferous, Kinderhook stage, Rockford, Ind.; septa natural size.

Figs. 4 and 5. Pericyclus blairi Miller and Gurley. Lower Carboniferous, Kinderhook stage, Sedalia, Mo.

Figs. 6-8. Milleroceras parrishi Miller and Gurley. Upper Coal Measures, Kansas City, Mo.

Figs. 9-11. Neoicoceras elkornense Miller and Gurley. Middle Coal Measures, Elkhorn Creek, Kentucky.

Figs. 15-17. Schistoceras fultonense Miller and Gurley. Upper Coal Measures, Fulton County, Ill.

Fig. 18. Septa of Prolecanites lyoni Meek and Worthen. Lower Carboniferous, Kinderhook stage, Rockford, Ind.

Fig. 19. Aganides rotatorius de Koninck. Lower Carboniferous, Kinderhook stage, Rockford, Ind.

Fig. 20. Septa of Pericyclus kochi Holzapfel. Lower Carboniferous, Tournaisian stage, Erdbach, Germany.

Fig. 21. Septa of Popanoceras parkeri Heilprin. Middle Coal Measures, Strawn formation, Wise County, Tex.

Note.—Figs 4-17 loaned by the University of Chicago, from Bull. Illinois State Mus. Nat. Hist., No. 11. Fig. 18 is after Frech, Die Steinkohlenformation. Pl. XLVI, A, fig. 11. Fig. 20 from Pal. Abhandl., Vol. V, Pl. III, fig. 6. Fig. 21 is from Proc. Acad. Sci. Phila., 1884, p. 53.)
CARBONIFEROUS AMMONOIDS.
PLATE XVII.
PLATE XVII.

Fig. 1. Goniatites kentuckiensis Miller .. 77
 Lower Carboniferous, Crab Orchard, Ky.
Figs. 2-5. Goniatites newsoni Smith, sp. nov ... 78
 Lower Carboniferous, St. Louis-Chester stage, Batesville, Ark.
 Figs. 2, 3. Natural size.
 Fig. 4. Inner coil of specimen shown in fig. 3; diameter 9 mm., 3 times enlarged.
 Fig. 5. Three times enlarged.
Figs. 6-8. Gastroceras illinoise Miller and Gurley .. 91
 Upper Coal Measures, Montgomery County, Ill.
Figs. 9-11. Gastroceras kansasense Miller and Gurley 91
 Upper Coal Measures, Kansas City, Mo.
Figs. 12-14. Goniatites greenICASTIENSI S Miller and Gurley 76
 Lower Carboniferous, Greencastle, Ind.
Figs. 15-17. Gastroceras spretum Miller and Gurley 97
 Upper Coal Measures, Montgomery County, Ill.
Figs. 18-20. Aganides jessiae Miller and Gurley ... 115
 Lower Carboniferous, Sedalia, Mo.

Note.—Figs. 1 and 6-20 loaned by the University of Chicago, from Bull. Illinois State Mus.
Nat. Hist. No. 11.
CARBONIFEROUS AMMONOIDS.
PLATE XVIII.
PLATE XVIII.

Glyphoceras calyx Phillips

Lower Carboniferous St. Louis-Chester stage, Moorefield, Ark.
Figs. 1-3, Larval stage, diameter 0.98 mm., 20 times enlarged; corresponding to Purodoceras.
Figs. 4 and 5. Early adolescent stage, corresponding to Prionoceras; diameter 1.56 mm., 1½ coils, 20 times enlarged.
Figs. 6-8. Later adolescent stage, transitional from Prionoceras to Glyphioceras; diameter 2.25 mm., 3½ coils, 13 times enlarged.
Figs. 9-11. Mature stage, diameter 4.25 mm., 4½ coils, 10 times enlarged.

184
CARBONIFEROUS AMMONOIDS
PLATE XIX.

Figs. 1 and 2. Muenstbroceras parallelum Hall. 121
Figs. 3-8. Muenstbroceras oweni Hall ... 120
Figs. 9 11. Prolecanites lyoni Meek and Worthen 54
Figs. 12-14. Aganides rotatorius de Koninck 112

Note.—The figures on this plate are slightly reduced by photography from Pal. N. Y., Vol. V, Pt. II, Pl. LXXIII.

All specimens on this plate from the Lower Carboniferous, Kinderhook stage, goniatite bed, Rockford, Ind.
CARBONIFEROUS AMMONOIDS.
PLATE XX.
PLATE XX.

Figs. 1-10. Schistoceras hyatti Smith, sp. nov. .. 104

Figs. 1 and 2. Transitional from paralegoceran to schistoceran stage, diameter 21 mm.,
twice enlarged.

Figs. 3 and 4. Early adult, schistoceran stage, diameter 40 mm., natural size, showing
the surface of shell.

Figs. 5 and 6. Adult stage, diameter 43 mm., natural size. This was Hyatt's type of the
genus Schistoceras.

Figs. 7 and 8. Adult stage, diameter 67 mm., natural size.

Figs. 9-11. Gonioilogoceras welleri Smith, sp. nov. ... 125

Adolescent, glyphicoceran stage, diameter 7.5 mm., enlarged 5 times.

Figs. 12-15. Dimorphoceras texanum Smith, sp. nov. (The cross section, fig. 13, is about
two-thirds natural size.) ... 126

Note.—All specimens on this plate from Upper Coal Measures, Cisco formation, Graham, Young
County, Tex.

188
PLATE XXI.
PLATE XXI.

Figs. 1-6. Goniotocoloseras welleri Smith, sp. nov. ... 125

Natural size.
Figs. 1 and 2. Early adolescent stage, with rounded abdomen.
Figs. 3 and 4. Adult stage, with angular and slightly furrowed abdomen.
Fig. 5. External septa.
Fig. 6. Internal septa.

Figs. 7-9. Gastroceras globulose Meek and Worthen ... 89

Figs. 10-13. Schistoceras hyatti Smith ... 104
Fig. 10, a and b. Gastriceran stage, 4 times enlarged; diameter 5.5 mm.
Fig. 11, a, b, and c. Paralegoeceran stage, 4 times enlarged; diameter 10.5 mm.
Fig. 12. Septa transitional from paralegoeceran to schistoceran stage; diameter 21 mm.;
twice enlarged.
Fig. 13. Adult septa, diameter 42 mm., natural size.

Figs. 14-16. Polyannoceras ganti Smith, sp. nov. .. 132
(The details of the internal septa, fig. 16, could not be made out.)
Figs. 17-19. Agathiceras ciscoense Smith, sp. nov. ... 131
Figs. 20-22. Schucheticites grahami Smith, sp. nov. ... 50

Note.—All specimens on this plate from the Upper Coal Measures, Cisco formation, Graham,
Young County, Tex.
CARBONIFEROUS AMMONOIDS.
PLATE XXII.
PLATE XXII.

Figs. 1-3. *Medlicottia copei* White .. 48
 Wichita Permian, military crossing of Big Wichita River, Baylor County, Tex.
 Specimen in Nat. Mus.
Figs. 4-8. *Waagenoceras commissi* White .. 139
 Wichita Permian, locality same as above.
 Specimen in Nat. Mus.
Figs. 9-11. *Popanoceras walcotti* White .. 134
 Wichita Permian, locality same as above.
 Specimen in Nat. Mus.

Note.—This plate was Pl. 1, Bull. U. S. Geol. Survey No. 77.
CARBONIFEROUS AMMONOIDS.
PLATE XXIII.

PROPRONITES GORByi Miller

Fig. 1. Miller's type specimen No. 9268, Walker Museum, from the Lower Carboniferous, Kinderhook stage, Chouteau limestone, Pin Hook Bridge, Pettis County, Mo.

Fig. 2. Specimen No. 6474, paleontologic collection, Walker Museum, University of Chicago, from the Lower Carboniferous, Kinderhook stage, Chouteau limestone, Pettis County, Mo.

Note.—Fig. 1 was Pl. VI, Jour. Geol., Vol. IX; specimen loaned by the University of Chicago. Fig. 2 is after Pl. VII, Jour. Geol., Vol. IX.
PLATE XXIV.
PLATE XXIV.

Figs. 1–4. Prolocanites guleyi Smith, sp. nov. 53
 Lower Carboniferous, Kinderhook stage, Cedar Gap, Wright County, Mo.
 Figs. 1–3. Side, front, and rear view, enlarged twice.
 Fig. 4. Septa from the same specimen, enlarged 4 times.

Figs. 5–7. Aganides discoidalis Smith, sp. nov 114
 Lower Carboniferous, Kinderhook stage, Chouteau limestone, Pettis County, Mo.
 Figs. 5 and 6. Side and front views.
 Fig. 7. Septa of same specimen, enlarged twice.

Figs. 8–12. Muensteroeras osagensis Swallow 119
 Lower Carboniferous, Kinderhook stage, Chouteau limestone, Pettis County, Mo.
 Figs. 8–10. Both sides and front, enlarged twice.
 Figs. 11 and 12. Side view of same specimen, with part of the outer whorl removed, to show the septa (fig. 12), enlarged twice, septa enlarged 4 times.

Figs. 13–20. Gastroceras welleri Smith, sp. nov. 98
 Middle Coal Measures, Des Moines formation, Carroll County, Mo.
 Figs. 13–15. Side, front, and rear views of the type specimen, enlarged twice.
 Figs. 16–18. Side, front, and rear views of another specimen, showing the septa, enlarged twice.
 Figs. 19 and 20. Side and front views of a smaller specimen, enlarged twice, to show the surface ornamentation.
CARBONIFEROUS AMMONOIDS.
PLATE XXV.

Figs. 1 and 2. Prodromites goebyi Miller. .. 37
Lower Carboniferous, Kinderhook, Burlington, Iowa. No. 6222, paleontologic collection,
Walker Museum, University of Chicago.

Figs. 3 and 4. Prodromites prematurus Smith and Weller 40
From the Lower Carboniferous, Kinderhook, of Rockford, Ind. No. 6223, paleontologic
collection, Walker Museum, University of Chicago.

Fig. 5. Septa of Hedisteemia mossisovici Diener .. 34
For comparison with the septa of Prodromites.

Figs. 6-8. Prodromites ornatus Smith, sp. nov. ... 39
Lower Carboniferous, Kinderhook stage, Chouteau limestone, Pettis County, Mo.
Figs. 6-7. Side and front views, natural sizes.
Fig. 8. Septa, enlarged 3 times.

(Note.—Figs. 1-5, Pl. VIII, Jour. Geol., Vol. IX, No. 3, were loaned by the University of
Chicago; fig. 5 is from Pal. Indica, Ser. XV, Cephalopoda of the Lower Trias, Pl. XX, fig. 1e.)

198
CARBONIFEROUS AMMONOIDS.
PLATE XXVI.

Figs. 1–5. Goniatites crenistria Philips

- Figs. 1, 2. Early adult stage, 1½ times enlarged, Lower Carboniferous, St. Louis-Chester stage, Moorefield, Ark.
- Fig. 3. Septa, natural size, Moorefield, Ark.
- Fig. 4. Septa, from the Lower Carboniferous limestone of the Iberg, near Grund, in the Hartz, 1½ times enlarged.
- Fig. 5. Surface ornamentation, Lower Carboniferous, St. Louis-Chester stage, Boles, Ark.

Figs. 6–13. Goniatites striatus Sowerby

- Figs. 6, 7. Lower Carboniferous, St. Louis-Chester stage, Batesville, Ark., 9.3 mm. diameter, 5 times enlarged.
- Fig. 8. Lower Carboniferous, St. Louis-Chester stage, Batesville, Ark., 14 mm. diameter, 1½ times enlarged.
- Fig. 9. Adult septa enlarged, Batesville, Ark.
- Fig. 10. Internal septa enlarged, Batesville, Ark.
- Fig. 11. Septa of young twice enlarged, Batesville, Ark.
- Figs. 12, 13. Adult, natural size, Batesville, Ark.

Figs. 14–18. Goniatites subrigidus Miller

- Figs. 14, 15. Three times enlarged, St. Louis-Chester stage, Batesville, Ark.
- Figs. 16, 17. Twice enlarged, Batesville, Ark.
- Fig. 18. Septa from the above specimen.
CARBONIFEROUS AMMONOIDS
PLATE XXVII.

WAAGENOCERAS HILLI Smith, sp. nov. ... 140

Upper Permian, Double Mountain formation, falls of Salt Croton Creek, Kent County, Tex.

(Enlarged 1½ times.)

Note.—From photograph by Franklin, Palo Alto.
PLATE XXVIII.

GASTROCEPHAS EXCELSUM Meek

Specimen No. 6226, paleontologic collection, Walker Museum, University of Chicago.
Upper Coal Measures, Osage, Kans.
Fig. 1. Side view, natural size.
Fig. 2. Septa, natural size, traced from the specimen.

Note.—Photograph loaned by Dr. Stuart Weller, University of Chicago.
CARBONIFEROUS AMMONOIDS.
PLATE XXIX

Gastrioceras excelsum Meek

Specimen No. 6226, paleontological collection, Walker Museum, University of Chicago.
Upper Coal Measures, Osage, Kans.
View from above, natural size.

Note.—Photograph loaned by Dr. Stuart Weller, University of Chicago.
CARBONIFEROUS AMMONOIDS.
INDEX.

(Names in italic are synonyms; figures in black-face type are numbers of pages on which detailed descriptions appear; figures in italics denote illustrations.)

A

Acmonolaterales .. 19
Adrianites Gemmellaro 21, 25, 105, 128, 129, 135
Acquales .. 19
Agranites de Montfort 14, 19, 20, 21, 24, 25, 35, 55, 56, 57, 58, 59, 76, 112-114, 124
<unknown> Goldfuss 64
discoidalis Smith, n. sp. 13, 114, 115, 145, 156
Eon Hall ... 112
jessica Miller and Gürley 21, 115, 145, 182
prae pe de Koninck 61
propinquus Winchell 13, 115-116, 118
rariori Winchell .. 13, 116
rotatorius de Koninck 13, 37, 112-114, 116, 121, 145, 156, 186
sowerbyi Miller and Faber 14, 114-117, 145, 264
shumarensis Winchell 13, 117, 118
sp. nov. Martin ... 79
var. cervulocea .. 68
var. <unknown> ... 80
Agranites .. 21, 27, 56, 112-124
Agathicerina Gemmellaro 18
Agathicerina Gemmellaro................................ 26, 28-30, 35, 106, 107, 109, 129, 150-151
<unknown> smith, n. nov. 16, 131, 138, 146, 180
hilderti Morton ... 107
microgastropus Morris 130
<unknown> Gemmellaro 103, 163
<unknown> .. 163
Agathicerina Meek .. 20, 21, 23, 35, 27-32, 33
opiius White and Whiffield 14, 32-33, 144, 162
Agathicerina ... 21, 23, 35, 32-33, 128
Ammonites .. 19
bellicusus Morton .. 142, 146
carbonarius von Buch 78, 84
colubrinus Morton 111
de na Goldfuss ... 63
<unknown> Morton ... 167
<unknown> Martin .. 63, 83, 92
<unknown> Hellprin 133
prae pe de Koninck 61
rotatorius de Koninck 112
sp. nov. de Koninck 78, 79
<unknown> Martin .. 89
<unknown> Giess .. 62
Ammonites, genera, table of Paleozoic 23-24
Ammonoids, classification of Paleozoic 19-25
of American Carboniferous, genera represented ... 23-28
Anagrestidae Mojsisovics 19, 20, 21, 23, 32, 54, 56, 57, 72, 76
latesp. Beyrich .. 72

Page

A. Anachrestida ... 21, 33
Aphyllites Mojsisovics 23
Anagrestida .. 129, 129
Anagrestida .. 20, 25, 38, 105, 128-111
Arkhaber, G. von, cited on Permian fauna of Armenia 21
B. Bacrites sandbergeri 24, 27, 31-32
Bacrites schmoller .. 14, 31-32, 114, 149
Bactritidae .. 23, 27, 34-32
Barrois, C., cited on <unknown> cyclophorites 46
Beloceras Hyatt .. 19, 20, 21, 21, 35-36
Beloceras Hyatt .. 24, 27, 31-41
Beloceras Hyatt .. 36
Bend formation, species found in 14
Benseke .. 36
Beyrich, subdivisions made by 19
Bigby, J. E., cited on <unknown> princeps 61
Boston group, species found in 11
Brownstein Hyatt .. 39, 21, 36, 37, 38, 60, 62, 112, 113
<unknown> Hall .. 112
<unknown> de Koninck 112, 111
Brammer, J. C., acknowledgments to 11
Broadhead, G. C., reference to 36, 39
Buch, L. von, reference to 19
C. Carbonari ... 19
Carboniferous, ammonites of American 25, 28
correlation table of 17-18
stratigraphy of American 13-17
Carnites Mojsisovics 35
Celloides Hyatt .. 29
Ceratites .. 75, 84
Clarke, J. M., cited on Anagrestida jessica 115
Clear Fork beds, species found in 16
Cimolites Gemmellaro 25, 28
<unknown> Xanthites Ammonites (<italics>) Martini 23
<unknown> Martini .. 78
Cretani .. 19
Crick, G. C., see Foerd, A. H., and Crick, G. C. 89
Cumnus, W. E., acknowledgments to 11
Cyclophorites .. 134-141
Cyclophorites Waagen 23, 28, 129, 131-134
Cymatites Gemmellaro 19, 23
Cymatites .. 23
Cymatites Waagen .. 23

Page

197
INDEX.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heleniuma Wagner</td>
</tr>
<tr>
<td>mojavesiensis Diener</td>
</tr>
<tr>
<td>Helicoceras</td>
</tr>
<tr>
<td>Hofschneider, cited on Birciceras</td>
</tr>
<tr>
<td>cited on Birciceras tetragonum Raem.</td>
</tr>
<tr>
<td>cited on Gomphoceras</td>
</tr>
<tr>
<td>cited on Pericyclus rohani</td>
</tr>
<tr>
<td>Homeceras Hyatt</td>
</tr>
<tr>
<td>edge Phillips</td>
</tr>
<tr>
<td>Hungarites Mojsisovics</td>
</tr>
<tr>
<td>Hungarites</td>
</tr>
<tr>
<td>Hyatt, A., acknowledgments to</td>
</tr>
<tr>
<td>cited on Ammonites</td>
</tr>
<tr>
<td>cited on Gomphoceras</td>
</tr>
<tr>
<td>cited on Glyptoceras</td>
</tr>
<tr>
<td>cited on Gomphoceras spheraeus</td>
</tr>
<tr>
<td>cited on Muensteroceras</td>
</tr>
<tr>
<td>cited on Muensteroceras ovata</td>
</tr>
<tr>
<td>cited on Nomisoceras</td>
</tr>
<tr>
<td>cited on Paralegoceras</td>
</tr>
<tr>
<td>cited on Paralegoceras lowense</td>
</tr>
<tr>
<td>cited on Pericyclus</td>
</tr>
<tr>
<td>cited on Prionoceras</td>
</tr>
<tr>
<td>quoted on Gomphoceras compressum</td>
</tr>
<tr>
<td>quoted on Gomphoceras entogenum</td>
</tr>
<tr>
<td>quoted on Schistoceras</td>
</tr>
<tr>
<td>subdivisions made by</td>
</tr>
<tr>
<td>Hyattoceras Gemmeclaro</td>
</tr>
</tbody>
</table>

I.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birciceras Karpinsky</td>
</tr>
<tr>
<td>tetragonum Raem.</td>
</tr>
<tr>
<td>Birciceras</td>
</tr>
<tr>
<td>Irregularites</td>
</tr>
</tbody>
</table>

J.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jackson, R. T., acknowledgments to</td>
</tr>
</tbody>
</table>

K.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karpinsky, A., cited on fauna of Upl Mountains</td>
</tr>
<tr>
<td>cited on Gomphoceras globosum</td>
</tr>
<tr>
<td>cited on Muensteroceras</td>
</tr>
<tr>
<td>quoted on Pronorites lobatus var. arkansensis</td>
</tr>
<tr>
<td>cited on Pronorites lobatus var. uralensis</td>
</tr>
<tr>
<td>cited on Schistoceras</td>
</tr>
<tr>
<td>Kinderhook, fossils of</td>
</tr>
<tr>
<td>Koninke, L. G. de, cited on Pronorites lobatus</td>
</tr>
</tbody>
</table>

L.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lanceolata</td>
</tr>
<tr>
<td>Locamites Mojsisovics</td>
</tr>
<tr>
<td>Locamite</td>
</tr>
<tr>
<td>Linguata</td>
</tr>
<tr>
<td>Lobites Mojsisovics</td>
</tr>
<tr>
<td>Lower Coal Measures, species found in</td>
</tr>
</tbody>
</table>

M.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>McChesney, J. H., quoted on Glyptoceras hubbaryanum</td>
</tr>
<tr>
<td>Meneoceras Hyatt</td>
</tr>
<tr>
<td>Magnesiamere</td>
</tr>
<tr>
<td>Magnesiamere</td>
</tr>
<tr>
<td>Manicoceras Hyatt</td>
</tr>
<tr>
<td>Marshall group, species found in</td>
</tr>
</tbody>
</table>

MON XLIII—02—14
INDEX.

Page.

210

Meek, F. B., and Worthen, A. H., quoted on Paralecercus hyattii.

20, 21, 31, 32, 56, 57, 72, 74, 76

Pericycloides

14, 19, 20, 24, 25, 26, 27, 32, 39, 40, 41, 44-46

Pericyclus Mojsisovici

15, 60-61, 114, 118

blairi Miller and Gurley

13, 53, 72-73, 74, 75, 76, 77, 78

kochi Holzapfel

10, 100, 101

ovin Hall

13, 53, 54, 144, 145

princeps von Koenike

61, 114

Ferrum, species found in

16

Pharriceras Hyatt

19, 21, 24

Poroceras Frech

21

Phillips, J., cited on Procentria cypholobus

46

Phylloceras

140

Fimactes Mojsisovici

19, 20, 21, 23

Pimactoceratidae

20, 25, 26

Papoceras Hyatt...

20, 21, 25, 26, 27, 32, 39, 40, 41, 44-46

Papoceras Hyatt...

20, 21, 23, 25, 26, 27, 32, 39, 120, 121, 135, 136

canadian White

10, 100, 101, 104-106

gunti Smith, sp. nov.

10, 132-133, 138, 146, 150

parkeri Hall

15, 132, 133, 146, 150

waltzoi White

16, 132, 133, 146, 150

Papoceratidae

23, 28, 29, 136, 141

Primordialidae

19

Primordialidae

20

Pleuroceras Hyatt, 19, 20, 21, 24, 25, 26, 27, 32, 39, 53-54, 144, 145, 146, 147

drondsi Winchell

13, 59, 144

bevilaquum de Koninck

56, 57

theonemose Miller

59, 144, 150

compactus Meek and Worthen

92

division Muenster

73

thobicus Winchell

59-60, 144

Prolecanoceras Clarke.

14

Prochasites

135

Primoceras Smith and Weller

24, 25, 26, 27, 31-34, 41, 47

gobyli Miller

13, 39, 40, 141

orriani Smith, sp. nov.

13, 39, 40, 144, 145

prenaturus Smith and Weller

15, 56, 61, 62, 121, 144, 150

Productus

21

cestriensis Meek

84

Procentria Mojsisovici

14

19, 20, 21, 23, 25, 26, 27, 32, 42, 45, 51-56

compactus Meek and Worthen

15, 42, 141, 145

granuli Miller

15, 52-54, 144, 150

guryi Smith, sp. nov.

13, 53, 141

henslowi Sowerby

54

houghtoni Winchell

13, 33-34, 144

thionianesi Rowley

13, 33-34, 144

Iyon Meek and Weller

15, 37, 58, 131, 135, 144, 146, 159, 160, 161

marshallensis Winchell

13, 55-56, 141

serpentinus Phillips

42

Procentria

11

Ashwickeites Gemmellaro

24

Plectoceratidae

20, 23, 24, 27, 34-35, 36

Plectoceratidae s. str.

51-56

Probolites Karpinsky

21, 23

Promecolitoccia

42

Promonites Hung

21, 24

Promonitis-Mojsisovici

19, 20, 21, 24, 26, 27, 41-46, 51, 52

brevirius Karpinsky

46

cyclobasus Phillips

41, 43, 46, 51, 54, 72, 173

var. alkannianesi Smith

14, 13-14, 54, 141

var. marlensis Karpinsky

43, 46, 46, 47

mixolobus Phillips

56

drepanicus Karpinsky

72

sichellii Miller

13, 47, 141, 150

Pronitoceratidae

24, 27, 41-49

Prophragmoceras Gemmellaro

21, 24, 41

INDEX.

Page.

210

Meekoceras

33

Mechoceras

33

Megaloceras

139

Middle Coal Measures, species found in

15

Miller, S. A., cited on Parolecoceras

31

Miller, S. A., and Fabre, C., quoted on Agamites

34

quoted on Gonioboleoceras

136, 137

quoted on Schistoceras

91

Milleteroceras Hyatt

20, 21, 25, 26, 27, 32, 39, 120-121

parish Miller and Gurley

13, 127-128, 146, 150

Mimoceras Hyatt

19, 21, 23

Mojosicove, E. von, cited on Anacostes

72

cited on Procentria

51

subdivisions made by

19

Moodyllites

135

Muensteroceras Hyatt

14

20, 24, 25, 27, 37, 57, 58, 76, 117-123, 124, 125, 145

barroisi Holzapfel

121

?holosi Swallow

13, 118, 145, 156

?indianensis Miller

13, 118, 145, 156

?mogranense Swallow

13, 119, 145

osagei Swallow?

13, 119, 145, 156

owenii Hall

13, 37, 55, 120-121, 123, 145, 158

parallelum Hall

13, 37, 55, 121-123, 145, 148, 150

schilleri Hyatt

120, 121

N.

Nautilinidae

19

Nautili

19

Naucardoceras

55, 114, 146, 150

Nomiscoceras Hyatt

20, 21, 26, 27, 33-34

monoceros Worthen

11, 34, 144

Noricidoceras

19, 24, 27, 54

O.

Ostenina sparsicosta Martin

78

Osage stage, species of

14

Otoceras Griesbach

14

Page.

P.

Paleozoic ammonoid genera, table of

23-24

Paleozoic ammonoids, classification of

19-28

?Parecielites Gemmellaro

24

Paralecoceras Biener

23

Paralecoceras Hyatt

20

24, 26, 27, 37, 58, 76, 82, 84, 91, 99-104, 105, 106, 109, 110, 111, 126, 128, 130, 131, 135, 136, 137, 139

balgreeni White

16, 89, 99-100, 145, 156

illinoensis Miller and Gurley

91

towense Meek and Worthen

14

15, 100-101, 102, 103, 145, 156, 166

towense Smith, sp. nov.

15, 101-104, 145

towense Smith, sp. nov.

14, 100, 104-105

towense Smith, sp. nov.

15, 100-101, 104-105

Uschbergoceras Karpinsky

193

Pachyceras

128

Paraparalecectes Karpinsky

21, 24, 25, 42, 45, 51

Parasococeras

21, 42
INDEX.

<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudarietites Frech</td>
<td>21</td>
</tr>
<tr>
<td>Pseudonomispioceras Frech</td>
<td>23</td>
</tr>
<tr>
<td>Ptychites camptoides White</td>
<td>139</td>
</tr>
<tr>
<td>Ptychites</td>
<td>38</td>
</tr>
<tr>
<td>Rockford, 1st... species found at</td>
<td>13</td>
</tr>
<tr>
<td>Roeber, F., cited on Glyptoceras Bierl</td>
<td>64</td>
</tr>
<tr>
<td>cited on Primorites cycloglaebus</td>
<td>46</td>
</tr>
<tr>
<td>Sageceras Mojsisovics</td>
<td>20</td>
</tr>
<tr>
<td>St. Louis-Chester stage, species of</td>
<td>14</td>
</tr>
<tr>
<td>Sandberger, G. and F., subdivisions made by</td>
<td>19</td>
</tr>
<tr>
<td>Sandbergeroceras Hyatt</td>
<td>19, 20, 21, 24</td>
</tr>
<tr>
<td>Serrai</td>
<td>19</td>
</tr>
<tr>
<td>Schistoceras Hyatt</td>
<td>19, 21-25, 27, 28, 29, 30-35, 37, 39, 90-97, 100-105, 107-115</td>
</tr>
<tr>
<td>fultozone Miller and Girty</td>
<td>15, 165, 166-167, 145, 149</td>
</tr>
<tr>
<td>hyatt Smith, sp. nov</td>
<td>16, 184, 166-167, 108-111, 113-115, 117, 118, 119</td>
</tr>
<tr>
<td>missourian Miller and Faber</td>
<td>16, 166, 107, 111-115, 117, 118, 119</td>
</tr>
<tr>
<td>Schuchert, Charles, acknowledgments to</td>
<td>11</td>
</tr>
<tr>
<td>Schumard, B. F., quoted on Goniatites choctawensis</td>
<td>67-68</td>
</tr>
<tr>
<td>Schumardites Smith</td>
<td>25, 26, 28, 129, 130, 131, 132, 133-139, 144, 149</td>
</tr>
<tr>
<td>Shumard Smith</td>
<td>16, 131, 135-138, 140, 141, 142</td>
</tr>
<tr>
<td>Simondsi Smith, sp. nov</td>
<td>24, 41, 42</td>
</tr>
<tr>
<td>Simonds, F. W., acknowledgments to</td>
<td>11</td>
</tr>
<tr>
<td>Simplices</td>
<td>19</td>
</tr>
<tr>
<td>Spireta</td>
<td>31</td>
</tr>
<tr>
<td>Sporadoceras Hyatt</td>
<td>19, 20, 21, 23, 27, 67</td>
</tr>
<tr>
<td>mammilliferum Sandberger</td>
<td>67</td>
</tr>
<tr>
<td>subinvolutum Muenster</td>
<td>67</td>
</tr>
<tr>
<td>Stacheoceras Gemmellaro</td>
<td>21, 25, 128, 135</td>
</tr>
<tr>
<td>Steinmann, G., classification by</td>
<td>21</td>
</tr>
</tbody>
</table>

Sness, E., cited on Ammonites in Mediterranean region | 129 |

T.
Thalassoceras Gemmellaro	21, 25
Timanites Mojsisovics	21, 23
Tornoceras Hyatt	19, 20, 21, 23, 25, 27, 55, 58, 115
tetracrinus von Buch	172
Trisarcoceras Hyatt	20, 21, 24
Trilites	75
Tronitidn	29, 38, 78, 85
Tzwetaev, M., cited on Bransoceras rotatorium	114

U.
| Upper Coal Measures, species found in | 15-16 |

W.
Waagen, W., cited on Hedenstratiina	35
genera recognized by	20
Waagenoceras Gemmellaro	20, 21, 23, 25, 26, 128, 129, 132, 137, 138-141
cuminsii White	16, 130-140, 146, 147, 148, 149, 150, 151
hilli Smith, sp. nov	16, 140-141, 146, 147, 148, 149
stachii Gemmellaro	140
Waverly group, species found in	15-16
Weiler, Stuart, acknowledgments to	11, 40
White, C. A., cited on Permian fossils of Texas	20
quoted on Paralegoceras baylense	99
quoted on Popoceras Walcotti	134
Wichita beds, species found in	16
Worthen, A. H., See Meek, F. B., and Worthen, A. H.	

X.
| Xenaspis Waagen | 23 |
| Xenodiscus Waagen | 30, 32 |

Z.
| Zittel, K. A. von, cited on Gastrioceras | 82 |
| cited on Primoceras | 57 |
PUBLICATIONS OF UNITED STATES GEOLOGICAL SURVEY.

[Monograph XLII.]

MONOGRAPHS.

I. Lake Bonneville, by G. K. Gilbert. 1890. 4°. xx. 438 pp. 51 pl. 1 map. Price $1.50.
VI. Contributions to the knowledge of the older Mesozoic flora of Virginia, by W. M. Fontaine. 1883. 4°. xi. 144 pp. 54 l. 54 pl. Price $1.05.
X. Dinocerata. A monograph of an extinct order of gigantic mammals, by O. C. Marsh. 1886. 4°. xvi. 245 pp. 56 l. 56 pl. Price $2.70.
XX. Geology of the Eureka district, Nevada, with an atlas, by Arnold Hague. 1892. 4°. xvii. 419 pp. 8 pl. Price $5.25.
XXI. The Tertiary rhynchophorous Coleoptera of the United States, by S. H. Scudder. 1893. 4°. xi. 206 pp. 42 pl. Price $0.90 cents.

XXVIII. The Marquette iron-bearing district of Michigan, with atlas, by C. R. Van Hise and W. S. Bayley, including a chapter on the Republic trough, by H. L. Smyth. 1895. 4°. 608 pp. 35 pl. and atlas of 30 sheets folio. Price $5.75.

XXIX. Geology of old Hampshire County, Massachusetts, comprising Franklin, Hampshire, and Hampden counties, by B. K. Emerson. 1898. 4°. xxi, 790 pp. 55 pl. Price $1.90.

XXXI. Geology of the Aspen mining district, Colorado, with atlas, by J. E. Sparr. 1898. 4°. xxxv, 260 pp. 43 pl. and atlas of 30 sheets folio. Price $3.60.

XXXVIII. The Illinois glacial lobe, by Frank Leverett. 1899. 4°. xxi, 817 pp. 24 pl. Price $1.60.

XL. Adephagons and clavicorn Coleoptera from the Tertiary deposits at Florissant, Colorado, with descriptions of a few other forms and a systematic list of the non-rhyncophorous Tertiary Coleoptera of North America, by S. H. Sedgler. 1900. 4°. 148 pp. 8 pl. Price 90 cents.

XLI. Glacial formations and drainage features of the Erie and Ohio basins, by Frank Leverett. 1902. 4°. 802 pp. 26 pls. Price $1.75.

XLII. Carboniferous ammonoids of America, by J. P. Smith. 1903. 4°. 211 pp. 29 pls. Price $3.50.

In press:

XLIII. The Mesabi iron-bearing district of Minnesota, by C. K. Leith.

XIV. The Vermilion iron-bearing district of Minnesota, by J. M. Clements.

All remittances must be by money order, made payable to the Director of the United States Geological Survey, or in currency—the exact amount. Checks, drafts, and postage stamps can not be accepted. Correspondence should be addressed to

The Director,

United States Geological Survey,

Washington, D. C.
[Take this leaf out and paste the separated titles upon three of your catalogue cards. The first and second titles need no addition; over the third write that subject under which you would place the book in your library.]

LIBRARY CATALOGUE SLIPS.

United States. Department of the interior. (U. S. geological survey.)

Department of the interior | — | Monographs | of the | United States geological survey | Volume XLII | [Seal of the department] |

Washington | government printing office | 1903

Second title: United States geological survey | Charles D. Walcott, director | — | The | Carboniferous ammonoids of America | by | James Perrin Smith | [Vignette] |

Washington | government printing office | 1903

4°. 211 pp., 29 pls.

Smith (James Perrin).

United States geological survey | Charles D. Walcott, director | — | The | Carboniferous ammonoids of America | by | James Perrin Smith | [Vignette] |

Washington | government printing office | 1903

4°. 211 pp., 29 pls.

[United States. Department of the interior. (U. S. geological survey.) Monograph XLII.]