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PREFACE

IN the course of studying thermodynamics I have found a con-
siderable gap between the text-books available and the modern
memoirs. This volume has been written to spare other students
some of the time which I have had to spend in bridging over
the gap for myself. .

As the title indicates, it is not a book of applications, but a
brief outline of the theory, the applications having been selected
solely with a view to their illustrative value. Physical applica-
tions may be found in any large work on Physics, while in the
field of Physical Chemistry M. Duhem’s recent work on Chemical
Mechanics * makes a new volume of applications superfluous for
the present.

I am, of course, indebted to many authors. In cases where
the methods used were not so well known as to be common
property, I have intended to mention my sources; but I must
particularly acknowledge my great indebtedness to Professor
Gibbs * and M. Duhem,* whose influence will be very evident
to readers familiar with their writings.

In concluding, it is a pleasure to express my thanks tv Professor
James Harkness of Bryn Mawr College, for aid and advice during
the preparation of the manuscript, and to Professor W. S. Franklin
of Lehigh University, T. W. Richard of Harvard University, and
J. E. Trevor of Cornell University, for assistance in revising the
proof, as well as for many valuable suggestions regarding the

subject matter.
EDGAR BUCKINGHAM,

CAMBRIDGE, MASSACHUSKTTS,
April 30th, 1900.

* See list of reference books in the Appendix.
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CHAPTER 1
THERMOMETRY

Thermal Equilibrium. Equal Temperatures

1. Two solid bodies which have been at a distance from each
other, exert, in general, when brought into contact, a mutual
influence: one body becomes warmer to the touch while the other
becomes cooler. After a time, no further change due to the con-
tact can be perceived, and the bodies are then said to be sensibly
in thermal equilibrium with each other. Our primitive means of
detecting such change, or lack of change, is the sense of heat or
cold at the surface of the human body, but the statements made
as to the mutual action of the two bodies remain true, whatever
artificially sensitive instrument we use for observing the changes.
‘When the bodies have reached a state of thermal equilibrium
they are said to have the same temperature, or their temperatures are
equal.

It is found by experiment that if a body A is in thermal equi-
librium with each of two others, B and C, taken separately, then
B and C are always in thermal equilibrium with each other.
This fact, which is of fundamental importance in thermometry,
since we usually test equality of temperature by means of a third
body,—the thermometer,—may be expressed by saying: Two
temperatures which are equal to a third are equal to each other.®

2. We have spoken only of the effects of the interaction of the
two bodies under consideration. In practice, these are always
complicated by the presence of the surrounding bodies, which
A
\ !
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2 THEORY OF THERMODYNAMICS [cHAP. I

produce effects which are superposed on that of the mutual
presence of the bodies specially under consideration. These
outside influences may, however, be reduced indefinitely, at least
as regards their rapidity, by surrounding the bodies to be studied
with a space as nearly nonconducting and impermeable to radia-
tion as possible. Or; we may determine the action of the outside

bodies by separate experiments, and thus, by elimination of the

outside action, find that of the two bodies on each other. These

methods give consistent results, and by either of them we may

find, as approximately as is necessary in the present state of
science, what would happen in the unattainable ideal case, when

all outside influence was excluded. Our statements about the

two bodies are entirely legitimate, when thus understood—as

they are always to be in what follows,

3. Nonmiscible liquids, or, in general, any combinations of
substances where the contact is not followed by any appreciable
mixing and the dividing surface remains definite, are subject to
the same remarks as solids. If the substances mix upon being
brought into contact, we can no longer speak of their tempera-
tures separately, since we have no means of experimenting on the
components in the mixture. Nevertheless, by the time the act of
mixing is complete, the mixture reaches a state in which,
considered as a single whole, it is, and remains, in thermal equi-
librium with a third indifferent body—the thermometer—of the
appropriate temperature. It is usual to speak of this temperature
of the mixture as being also the temperature of the separate
components, and this mode of expression does not lead us into
any practical difficulties, although it has evidently no justification

a priori.
Uniform Temperature
4. A single body, left to itself, attains, finally, a state of
internal thermal equilibrium between its various parts; at least,

so far as we can detect by experiments on various portions of it.
It is then said to have the same temperature throughout, or to
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have a wuniform temperature. Whether this language would be
allowable if we could study infinitesimal portions of the body, is
an unanswerable, but also, for our purposes, a useless question.
Whenever, in future, we speak of the temperature of a body, we
shall understand that temperature to be uniform, unless the
contrary is stated.

Comparison of Different Temperatures

b. Having defined equality of temperature, we have next to
consider how unequal temperatures are to be compared. Of two
bodies which are not at the same temperature, the one, which, if
they were placed in contact, would cool off, is said to be the
hotter or to have the higher temperature. 'We have thus a con-
vention regarding the signs of differences of temperature. As
regards the mode of determining such differences, the size of the
unit, and the absolute value assigned to any given temperature,
our choice is purely arbitrary and dictated by convenience. The
only conditions to which it is subject are, that a given tempera-
ture shall be unequivocally denoted by a given number, and that
the values of temperatures, when measured, shall satisfy the
algebraic law of addition and subtraction; in other words, that
if T, T,, and T are three different temperatures,

(To=T)+ Ty =T =(Ty=T)ereveeoeeerannnn 1)

Thermometers

6. Since our sense of heat and cold is not to be relied upon
quantitatively, we select some accurately measurable property or
characteristic of matter, which is altered by changes of tempera-
ture. The property must be of such a nature, that for a given
temperature we always get the same numerical value from our
measurement, and that the same numerical value can not be
obtained from two different temperatures. In other words, the
property or characteristic must be unequivocally connected with
the temperature we wish to measure.
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The volume of a body, under a uniform and constant external
pressure, is a property which for many substances—especially
liquids and gases—satisfies the condition nearly enough for
practical purposes. We may, then, construct a thermometer, by
arranging a mass of such a substance so that changes in its
volume may be easily and accurately measured, We then define
the sizes of differences of temperature most simply, by making
them proportional to the changes of volume of the thermometric
substance. The scale of temperature is, finally, completely fixed by
assigning arbitrary values to any two definite and easily repro-
ducible temperatures.

For the construction, marking, calibration, etc. of the thermo-
meters actually in use, the reader, if not already familiar with
the subject, may turn to any work on experimental physics, as
we are here concerned with the principles and not with the
details of thermometry.

7. Thermometers of different substances give, in general, in-
consistent readings, and the choice of a substance is arbitrary.
The more nearly permanent gases, however, such as oxygen,
hydrogen, and nitrogen have, if not too dense, almost identical
fractional changes of volume at constant pressure, or of pressure
at constant volume, when subjected to identical changes of
temperature. We have here a considerable class of substances
of similar behaviour, and the choice of one of them as a thermo-
metric substance seems, in a certain sense, less arbitrary than in
the case of other substances. For this and other practical
reasons, although the mercury-in-glass thermometer is the one
most used in ordinary work, the constant volume thermometer,
containing hydrogen, is used as the scientific standard of com-
parison.* Changes of temperature are then proportional to the
corresponding changes of pressure of a mass of hydrogen confined
in an envelope of invariable volume.

* This remark is subject to the modifications of article 110.
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Thermometric Scales

8. By assigning to the freezing point of pure water at normal
barometric pressure, the value 0°, and to the boiling point under
the same circumstances, the value 100°, we get the so-called
Celsius, or centigrade, scale. The temperature measured on this
scale, by the changes of pressure in a constant-volume hydrogen
thermometer, agrees very closely, between 0° and 100°, with that
indicated by the ordinary centigrade mercury thermometer. We
shall, hereafter, denote the temperature measured in this way
by ¢

The temperature being measured on this scale, we have, as a.
result of experiments on the changes of pressure of the more
permanent gases

100
Pro0=Lo=ggPoy -+eeeseruneeee e 2)

nearly ; whence, if a gas be used as the thermometric substance
in a constant-volume thermometer, we have

t
Pe—Po=7g73P0

or Pe=

973(t+ DY) WSRO (3)

all the changes being supposed to occur at constant volume, and
the pressure being measured by an appropriate manometer.
If we write

E+2T3 =T woererererererreercaeerennen, (4)

we have, for a fixed mass of gas at a fixed volume,

S ()

and if we call T the absolufe lmpcrahm by the gas thermometer,
we may say : The absolute temperature by the gas thermometer is pro-
portional to the pressure of a given mass of gas kept at constant
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volume. In future, we shall use 7' to designate this temperature
read on the hydrogen thermometer.

9. We may evidently consider T to be merely the temperature
measured in Celsius degrees from a point at (—273°) of the
ordinary scale. This point is known as the absolute zero of the gas
scale. But since, at very low temperatures, gases cease to behave
alike, and finally cease to exist as gases at all, it is best to avoid
such questions as “ What would happen to a gas if it were cooled
to the absolute zero?” and to consider the absolute zero as a
mere mathematical abstraction, introduced for convenience in our
reasoning. Its greatest service is in simplifying the expression
of Boyle’s Law for varying temperature. For a gas which obeys
Boyle’s Law, we have, for a given temperature, pv= constant,
which gives us at once, from equation (5), the statement that

p,,,,,=§<,}_"§r=31', ........................... (6)

R being a constant which depends only on p, and 7, i.c., on the
quantity of gas considered. Equation (6) may be deduced as
follows :—Put equation (5) in the general form,

A N s
(0 S D

which it assumes when the volume is not constant. Multiplying
b
y T, we get p=2f(r). T.

Baut, in its general form, Boyle’s Law states that

po=¢(T).
vf(v) = constant = R,

Hence’..'u.r: o

and we have pv=RT.

This equation, sometimes called the Law of Boyle and Gay-
Lussac, is, in reality, merely a definition of the temperature T,
by a substance which follows Boyle’s Law. The “Law " of Gay-
Lussac consists in the statement that for all the more permanent

* e Dsbyn ' Iuv-J »‘xul, r.'l'lo. ‘27
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gases—which are also the ones that follow Boyle’s Law most
approximately—the absolute temperatures, as defined by equa-
tion (6), are approximately the same.*

Of all the actual gases no one follows Boyle’s Law exactly,t
and for no two is Gay-Lussac’s Law rigorously true ; but we may
say, in general, that these two laws are true to about the same
degree of approximation, and that this approximation increases
with rise of temperature and with decrease of density.

In Chapter VIII we shall give a new definition of absolute
temperature ; but, for present purposes, temperature as a measur-
able quantity has been sufficiently defined.**

Temperature at a Point

10. We sometimes need to speak of the temperature at a point
in a body. If the body has not a uniform temperature, this
temperature at a point is not directly measurable, and what we
observe is merely a certain mean value of the temperatures of the
parts immediately { surrounding the thermometer. What we
shall mean, then, by this expression, is the temperature which
would be shown by a very small thermometer filling a hole cut in
the body about the point in question. We may, if we choose,
imagine the dimensions of this hole to become infinitesimal, but
though this may be convenient, mathematically, and does not
lead us to conclusions in conflict with experience, it is well to
note that in fact our measurements are made in holes of finite
size.

* Strictly speaking, Gay-Lussac’s statement referred only to expansion
at constant pressure, but the consideration that these gases are subject
to Boyle’s Law leads to the statement as given above.

+Except for an infinitesimal interval.

+The thermometer is supposed to receive no radiation, and to be
influenced only by direct contact.

..P\Mom‘}ufw'w VMgmnﬂw‘mtxﬁ an C(uXMp(wrm



CHAPTER II
CALORIMETRY

Quantity of Heat

11. WHEN an equalization of temperature follows the contact
of two bodies, the fact may be very simply expressed by saying
that something has passed from the hot body to the cold one.
We say that a certain quantily of heat has passed from the hot to

9 f hle' | the cold body, and that heat continues to flow as long as any

p(

T are

0

difference of temperature remains. We imply by this, that heat
is something which warms a body by passing into it and leaves
the body colder when it passes out.

The most natural and immediate conception is, perhaps, that
this ‘something’ is a quantity of a substance, and that increase
or decrease of temperature means increase or decrease of the
quantity of this substance contained in the body in question.
This view was the basis of the Caloric Theory of Heat. The idea
that heat is a substance, in any ordinary sense of the word, had,
however, to be abandoned, when it was shown, by the experi-
ments of Davy, Rumford, and others, that heat had no weight,
and that it could be produced in unlimited quantities, merely by
doing mechanical work.

12 Without, however, binding ourselves to any particular
mental picture of the intimate nature of the difference between a

" body when hot and the same body when cold, we may, without

anywhere coming into conflict with experimental results, speak of
a quantity of heat in the sense in which the term is used in article 11.
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This notion of a quantity of heat as something which, during the
simple contact of bodies of unequal temperature, changes its distri-
bution but remains constant in total amount, is, in the present state
of the theory of thermodynamics, of fundamental importance. It
is well, therefore, to examine carefully the precise meaning of the
expression ¢ quantity of heat.’

Ideas contained in the term ‘Quantity of Heat’

13. It is known by experiment that bodies may be heated by
doing mechanical work upon them ; by friction, for example.
We also know, that while a cold body is being heated at the
expense of a hot one, a certain amount of mechanical work may be
done by the use of mechanism actuated only by the difference of
temperature of the two bodies in question, and that the degree to
which the cold body is heated, depends on the amount of
mechanical work obtained—the heating of the cold body being
greater as the vzork is less, and wvice versa. The steam engine,
working between the hot boiler and the cold condenser, is an
example of such a piece of mechanism.

We must, then, say that in the first case heat is produced by
the work done, and that in the second, work is done by the
expenditure of a quantity of heat. Hence, if we are to treat
heat as constant in total amount, we must make sure that only
purely thermal phenomena are under consideration, and that no
mechanical work comes into play. Similar attention must be
paid to possible chemical, electrical, and other actions.

14. Under these conditions, we may consider heat as unchanged
in total amount during redistribution. Our first idea of heat is
that of something which increases the temperature of a body
when added to it and decreases the temperature when taken
away.* The first addition which we make to this conception is

*It is to be noticed that we are, in this discussion, considering only
bodies which do not, within the limits of temperature in question, have
any singular points as regards their behaviour. In other words, the sub-
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the assumption, that when a given body cools through a definite
inlerval, the quantity of heat it gives out is always the same, regardless
of what becomes of the heat after it leaves the body in question.
This addition may be considered as a matter of definition. It is
an assumption, in so far as we do not know, without the test of
experimental practice, whether the definition, so formed, will
represent any physical quantity at all, or whether it will lead us
into reasoning which contradicts our experience. Practically, we
find that we are not led into any difficulty by making this a
fundamental element of our notion of quantity of heat. Hence
the assumption is justified by its convenience.

15. We have next to consider more closely the equality of
quantities of heat. The questions to be answered are: When are
two quantities of heat equal ? and, Are two quantities of heat,
which are equal to a third, equal to each other?

If a body 4, in cooling from T to T, heats a second body B
from 6, to 6,, no communication of heat taking place with outside
bodies, the heat @, given out by A is, by article 12, equal to the
heat @, received by B. If the same body 4, in cooling through
a different interval, 7", to T",, heats B through the same interval
as before, 0, to 6, the quantity of heat ¢',, given out by 4 in
the second experiment, is also equal to @, The same is true of
the quantity @, given out by any third body C in cooling from
T, to T", if, by this cooling, B is heated through the original
interval. In general, any quantity of heat, no matter by what
body or between what temperatures it is given out, is, by
definition, equal to @, if, when it all passes into B, it raises the
temperature of B from 6, to 6,.

Since these quantities of heat are equal to the same quantity,
it is a natural conclusion that they are all equal to one another :
they must be so, if heat is to be treated as a quantity in the

stances are not to be subject to melting, boiling, allotropic changes,
chemical dissociation, etc. They are also supposed not to exhibit any such
effects of thermal lag a8 occur in the heating and cooling of glass, or the
heating and cooling of sulphur about its point of transformation at 95-4°.
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ordinary sense. Yet the proposition is, in itself, neither clear
nor obvious; for we have, so far, only defined equality of heat
given out by one body with that received by another, whereas
the quantities now under consideration are all quantities given
out. To fill up this gap, we shall make it a matter of definition
that quantities of heat which are equal to the same quantity are equal
to one another. This addition to our notion has the same
justification as the one mentioned in article 14 ; it is convenient,
and does not lead us into reasoning which is contradicted by
experience.

16. As in article 15, let 4, in cooling from T to T,, and C, in
cooling from T, to T",, give off quantities of heat @, and @, which
are equal to @, and to each other. Let 7", be lower than T,. If
we now take 4 at the temperature T, and C at the temperature
T",, we find experimentally, that when they are placed in con-
tact, C is warmed from T, to 7", by the heat which 4 gives off
in cooling from T, to T,. Hence the quantity of heat @', received
by C is equal to @, given off by 4. But by article 15, @, the
heat given out by C in cooling through this same interval, 7, to
T", is equal to Q,. Hence @, and @', are equal. We have,
therefore, the result, that a body gives out just as much heat in cool-
ing through a given interval as i receives tn being warmed through the
same interval.

17. Having thus discussed what we are to mean by equality
of quantities of heat, we must find a method of comparing
unequal quantities. The simplest way is to say that the
magnitudes of two quantities of heat are to each other as the
masses of some standard substance which they can raise through
a given interval of temperature. If the substance chosen as the
standard of comparison is homogeneous and isotropic, and if we
do not attempt to work with very small masses of it,* this

* We must not base any argument on the consideration of separate masses
which are so small that their surface energy is appreciable in comparison
with the energy which we are putting in or taking out in the form of
heat.
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method of comparing quantities of heat gives us results which
are entirely satisfactory. It is, then, justified by experience.

Recapitulation

18. To recapitulate the important elements which, taken to-
gether, make up our notion of quantity of heat, we may say :

I. Bodies lose heat while cooling, and recetve it while being warmed.

I1. The total quantity of heat does not change during redistribution ;
or the heat lost by one body is equal to that gained by the other, or
others, which are warmed by the cooling of the first.

IIL. In cooling through a given interval, a given body always gives
out the same quantity of heal.

IV. Quantities of heat which are equal to the same quaniity are
equal to each other.

V. A body, in cooling through a given interval, gives out the same
quantity of heat as it receives in being warmed through that interval.

V1. Quantities of heat are proportional to the masses of & standard
substance which they can warm through any fixed interval of tempera-
ture.

These statements are all subject to the limitations of article 13,
and of the notes to articles 14 and 17. ,

Measurement of Quantities of Heat

19. We now proceed to the practical question of measurement.

" The standard substance, which we use in practice, is water, and

the unit of heat is usually defined as the heat necessary to raise a unit
mass of water one degree in temperature. As we shall always use
the C.G.S. system of units and the Celsius degree, the unit of
heat is the heat needed to raise the temperature of one gram of
water one Celsius degree. The quantity thus approximately
defined is called the small or gram calorie, in distinction from the
large or kilogram calorie, which is one thousand times as large.
This definition is still only approximate, for we have stated
only the size and not the position of the interval of temperature.
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It is very common to use, for the definition, the interval 0° to 1°;
but for purposes of actual experiment, this interval is badly
chosen. In practice, some . other interval between 0° and 20° is
far more often used, though the position of the interval has,
within these limits, an influence of less than 1 per cent. on the
value of the calorie. In the rest of the present work, we shall, if
it is necessary to be exact, understand the calorie to be the heat
needed to heat one gram of water from 10° to 11° Celsius.

20. To measure any quantity of heat we have, then, to find
by experiment, directly or indirectly, how many grams of water
it could warm from 10° to 11° Celsius.

The experimental methods in actual use for measuring
quantities of heat are based on the ideas collected in article 18.
For a description of apparatus and methods, the reader may con-
sult Preston’s THEORY oF HEAT or any of the larger works on
experimental physics. We shall assume that he is familiar with
these methods as well as with the ordinary facts concerning
specific and latent heats.

21. The unit of heat defined above has been in use for a long
time but has never been thoroughly satisfactory because of the
difficulties in using it exactly. Several other units have been
used, and some are now (1899) under discussion; but, for the
present, we need not consider any except the mechanical unit, to
which we shall now turn our attention.

Mechanical Production of Heat. The Mechanical
Equivalent

22. As stated in article 13, heat may be produced by doing
mechanical work, or ezpending mechanical energy. We may, for
instance, heat two bodies by rubbing them together, all the work
being done against friction and leaving the bodies, finally, with
no more kinetic energy than they had at the start, but with
a higher temperature. We may also produce other effects
commonly caused by a supply of heat. A case in point is Davy’s
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‘ice-rubbing experiment,” in which two pieces of ice were
melted by being rubbed together, while isolated, as far as possible,
from the transmission of heat from outside bodies.

23. Since we have means of measuring both work and heat, we
may investigate the amount of heat produced by a known
quantity of work. Such experiments were first accurately
performed by Joule, in his celebrated researches on the Mechanical
Equivalent of Heat, the publication of which was begun in 1843.
The conclusion to be drawn from his experiments was, that a
unit of heat required for its production the expenditure of a
definite number of units of mechanical energy, no matter in what
particular way the work was done, i.c., the energy expended.
The more accurate the experiments, the more nearly equal were
the quantities of heat produced by equal quantities of work. The
hypothetical generalization of this result is, that however the
work may be done, fo produce a unit of heat always requires exactly
the same amount of work, or that heat and mechanical energy are
equivalent. The number of units of work needed to produce one
unit of heat is known as the mechanical equivalent of heat, or
Joule’'s Equivalent. It is commonly denoted by the letter J.

Later experiments have confirmed the conclusions from Joule’s
work, and have left his value of J sensibly unchanged. If our
units are the gram calorie (10° to 11°) and the erg, the value of
the mechanical equivalent is J=42 x 108, very approximately.

24. Work may also be obtained by using up heat, and though
it is here not so easy to make a quantitative test of the ratio of
transformation, it is universally accepted as an exact law of
nature, which has no exceptions, that heat and mechanical
energy, that is, power of doing mechanical work, are equivalent in
the sense that if either is produced at the expense of the other,
the ratio of the quantities in question is always the same.

Heat a Form of Energy

25. We thus reach the conclusion that a quantity of heat, as
we have defined it, is not a substance, but a quantity of energy ;
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for ‘energy’ is only another name for ‘power of doing work.’
This leads us, farthermore, to a new unit of heat. If, instead of

the calorie, we take -a unit times as great; if, in other

1
42 x 108
words, instead of the gram, we take

1 .
5106 e of water in

defining our unit, the result will be that one unit of heat is
equivalent to one erg, and we may consider a quantity of heat as a
quantity of energy measurable in ergs, the erg being the common
unit of energy.

In future we shall, in all our theoretical work, consider heat to
be measured in ergs, as by doing so we simplify the writing of
our equations. The calorie need be mentioned, only when it is
necessary to refer to the results of experiments in which the
calorie has been used as the unit.



6 THEORY OF THERMODYNAMICS [cHAP. 1

volume. In future, we shall use 7" to designate this temperature
read on the hydrogen thermometer.

9. We may evidently consider T’ to be merely the temperature
measured in Celsius degrees from a point at (—273°) of the
ordinary scale. This point is known as the absolute zero of the gas
scale. But since, at very low temperatures, gases cease to behave
alike, and finally cease to exist as gases at all, it is best to avoid
such questions as ¢ What would happen to a gas if it were cooled
to the absolute zero?” and to consider the absolute zero as a
mere mathematical abstraction, introduced for convenience in our
reasoning. Its greatest service is in simplifying the expression
of Boyle’s Law for varying temperature. For a gas which obeys
Boyle’s Law, we have, for a given temperature, pv= constant,
which gives us at once, from equation (5), the statement that

Y 7 (6)

R being a constant which depends only on p, and v, i.c., on the
quantity of gas considered. Equation (6) may be deduced as
follows :—Put equation (5) in the general form,

A —
SO S S

which it assumes when the volume is not constant. Multiplying

by oT, we get p=of().T.
But, in its general form, Boyle’s Law states that
p=9¢(T).
Hence | wee D"~ of(v) =constant = R,
*
and we have pv=RT.

This equation, sometimes called the Law of Boyle and Gay-
Lussac, is, in reality, merely a definition of the temperature T,
by a substance which follows Boyle’s Law. The ¢“Law” of Gay-
Lussac consists in the statement that for all the more permanent

* s B, Tooeg AR, 0. 127
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gases—which are also the ones that follow Boyle’s Law most
approximately—the absolute temperatures, as defined by equa-
tion (6), are approximately the same.*

Of all the actual gases no one follows Boyle’s Law exactly,t
and for no two is Gay-Lussac’s Law rigorously true; but we may
say, in general, that these two laws are true to about the same
degree of approximation, and that this approximation increases
with rise of temperature and with decrease of density.

In Chapter VIII we shall give a new definition of absolute
temperature ; but, for present purposes, temperature as a measur-
able quantity has been sufficiently defined.**

Temperature at a Point

10. We sometimes need to speak of the femperature at a point
in a body. If the body has not a uniform temperature, this
temperature at a point is not directly measurable, and what we
observe is merely a certain mean value of the temperatures of the
parts immediately } surrounding the thermometer. What we
shall mean, then, by this expression, is the temperature which
would be shown by a very small thermometer filling a hole cut in
the body about the point in question. We may, if we choose,
imagine the dimensions of this hole to become infinitesimal, but
though this may be convenient, mathematically, and does not
lead us to conclusions in conflict with experience, it is well to
note that in fact our measurements are made in holes of finite
size.

* Strictly speaking, Gay-Lussac’s statement referred only to expansion
at constant pressure, but the consideration that these gases are subject
to Boyle’s Law leads to the statement as given above.

+Except for an infinitesimal interval.

$The thermometer is supposed to receive no radiation, and to be
influenced only by direct contact.

"F\MN}M Fw— we mgmﬂmmm i b nddad wjrew .
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CHAPTER 1II
CALORIMETRY

Quantity of Heat

11. WHEN an equalization of temperature follows the contact
of two bodies, the fact may be very simply expressed by saying
that something has passed from the hot body to the cold one.
We say that a certain guantity of heat has passed from the hot to

u the cold body, and that heat continues to flow as long as any
difference of temperature remains. We imply by this, that heat
is something which warms a body by passing into it and leaves
the body colder when it passes out.

The most natural and immediate conception is, perhaps, that
this ‘something’ is a quantity of a substance, and that increase
or decrease of temperature means increase or decrease of the
quantity of this substance contained in the body in question.
This view was the basis of the Caloric Theory of Heat. The idea
that heat is a substance, in any ordinary sense of the word, had,
however, to be abandoned, when it was shown, by the experi-
ments of Davy, Rumford, and others, that heat had no weight,
and that it could be produced in unlimited quantities, merely by
doing mechanical work.

12, Without, however, binding ourselves to any particular
mental picture of the intimate nature of the difference between a

~ body when hot and the same body when cold, we may, without
anywhere coming into conflict with experimental results, speak of
a quandily of heat in the sense in which the term is used in article 11.
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This notion of a quantity of heat as something which, during the
simple contact of bodies of unequal temperature, changes ifs distri-
bution but remains constant in total amount, is, in the present state
of the theory of thermodynamics, of fundamental importance. It
is well, therefore, to examine carefully the precise meaning of the
expression ¢ quantity of heat.’

Ideas contained in the term ‘Quantity of Heat’

13. It is known by experiment that bodies may be heated by
doing mechanical work upon them ; by friction, for example.
We also know, that while a cold body is being heated at the
expense of a hot one, a certain amount of mechanical work may be
done by the use of mechanism actuated only by the difference of
temperature of the two bodies in question, and that the degree to
which the cold body is heated, depends on the amount of
mechanical work obtained—the heating of the cold body being
greater as the work is less, and vice versa. The steam engine,
working between the hot boiler and the cold condenser, is an
example of such a piece of mechanism.

We must, then, say that in the first case heat is produced by
the work done, and that in the second, work is done by the
expenditure of a quantity of heat. Hence, if we are to treat
heat as constant in total amount, we must make sure that only
purely thermal phenomena are under consideration, and that no
mechanical work comes into play. Similar attention must be
paid to possible chemical, electrical, and other actions.

14. Under these conditions, we may consider heat as unchanged
in total amount during redistribution. Our first idea of heat is
that of something which increases the temperature of a body
when added to it and decreases the temperature when taken
away.* The first addition which we make to this conception is

*1t is to be noticed that we are, in this discussion, considering only
bodies which do not, within the limits of temperature in question, have
any singular points as regards their behaviour. In other words, the sub-
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the assumption, that when a given body cools through a definite
inerval, the quantity of heat it gives out is always the same, regardless
of what becomes of the heat after it leaves the body in question.
This addition may be considered as a matter of definition. It is
an assumption, in so far as we do not know, without the test of
experimental practice, whether the definition, so formed, will
represent any physical quantity at all, or whether it will lead us
into reasoning which contradicts our experience. Practically, we
find that we are not led into any difficulty by making this a
fundamental element of our notion of quantity of heat. Hence
the assumption is justified by its convenience.

16. We have next to consider more closely the eguality of
quantities of heat. The questions to be answered are: When are
two quantities of heat equal? and, Are two quantities of heat,
which are equal to a third, equal to each other?

If a body 4, in cooling from T to T, heats a second body B
from 6, to 6,, no communication of heat taking place with outside
bodies, the heat @, given out by 4 is, by article 12, equal to the
heat @, received by B. If the same body 4, in cooling through
a different interval, 7", to I",, heats B through the same interval
as before, 6, to 6,, the quantity of heat ¢',, given out by A in
the second experiment, is also equal to @;. The same is true of
the quantity @, given out by any third body C in cooling from
7", to T",, if, by this cooling, B is heated through the original
interval. In general, any quantity of heat, no matter by what
body or between what temperatures it is given out, is, by
definition, equal to @, if, when it all passes into B, it raises the
temperature of B from 6, to 6,.

Since these quantities of heat are equal to the same quantity,
it is a natural conclusion that they are all equal to one another:
they must be so, if heat is to be treated as a quantity in the

stances are not to be subject to melting, boiling, allotropic changes,
chemical dissociation, etc. They are also supposed not to exhibit any such
effects of thermal lag as occur in the heating and cooling of glass, or the
heating and cooling of sulphur about its point of transformation at 95-4°.
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ordinary sense. Yet the proposition is, in itself, neither clear
nor obvious; for we have, so far, only defined equality of heat
given out by one body with that received by another, whereas
the quantities now under consideration are all quantities given
out. To fill up this gap, we shall make it a matter of definition
that quantities of heat which are equal to the same quantity are equal
to one amother. This addition to our notion has the same
justification as the one mentioned in article 14 ; it is convenient,
and does not lead us into reasoning which is contradicted by
experience.

16. As in article 15, let 4, in cooling from T} to T,, and C, in
cooling from T, to T, give off quantities of heat @, and ¢, which
are equal to @, and to each other. Let 7", be lower than T,. If
we now take 4 at the temperature T and C at the temperature
T",, we find experimentally, that when they are placed in con-
tact, C' is warmed from T, to T”, by the heat which 4 gives off
in cooling from T, to T,. Hence the quantity of heat @', received
by C is equal to @, given off by 4. But by article 15, @, the
heat given out by C in cooling through this same interval, 7", to
T", is equal to @, Hence @, and @', are equal. We have,
therefore, the result, that a body gives out just as much heat in cool-
ing through a given interval as it receives in being warmed through the
same interval.

17. Having thus discussed what we are to mean by equality
of quantities of heat, we must find a method of comparing
unequal quantities. The simplest way is to say that the
magnitudes of two quantities of heat are to each other as the
masses of some standard substance which they can raise through
a given interval of temperature. If the substance chosen as the
standard of comparison is homogeneous and isotropic, and if we
do not attempt to work with very small masses of it,* this

* We must not base any argument on the consideration of separate masses
which are so small that their surface energy is appreciable in comparison
with the energy which we are putting in or taking out in the form of
heat.
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method of comparing quantities of heat gives us results which
are entirely satisfactory. It is, then, justified by experience.

Recapitulation

18. To recapitulate the important elements which, taken to-
gether, make up our notion of quantity of heat, we may say :

1. Bodies lose heat while cooling, and receive it while being warmed.

I1. The total quantity of heat does not change during redistribution,;
or the heat lost by one body is equal to that gained by the other, or
others, which are warmed by the cooling of the first.

II1. In cooling through a given interval, a given body always gives
out the same quantity of heal.

IV. Quantities of heat which are equal to the same quamtity are
equal to each other.

V. A body, in cooling through a given interval, gives out the same
quantity of heat as it receives in being warmed through that interval.

V1. Quantities of heat are proportional to the masses of a standard
substance which they can warm through any fixed inferval of tempera-
ture.

These statements are all subject to the limitations of article 13,
and of the notes to articles 14 and 17. ,

Measurement of Quantities of Heat

19. We now proceed to the practical question of measurement.

* The standard substance, which we use in practice, is water, and

the unit of heat is usually defined as the heat necessary to raise a unit
mass of waler one degree in temperature. As we shall always use
the C.G.S. system of units and the Celsius degree, the unit of
heat is the heat needed to raise the temperature of one gram of
water one Celsius degree. The quantity thus approximately
defined is called the small or gram calorie, in distinction from the
large or kilogram calorie, which is one thousand times as large.
This definition is still only approximate, for we have stated
only the size and not the position of the interval of temperature.
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It is very common to use, for the definition, the interval 0° to 1°;
but for purposes of actual experiment, this interval is badly
chosen. In practice, some other interval between 0° and 20° is
far more often used, though the position of the interval has,
within these limits, an influence of less than 1 per cent. on the
value of the calorie. In the rest of the present work, we shall, if
it is necessary to be exact, understand the calorie to be the heat
needed to heat one gram of water from 10° to 11° Celsius.

20. To measure any quantity of heat we have, then, to find
by experiment, directly or indirectly, how many grams of water
it could warm from 10° to 11° Celsius.

The experimental methods in actwal use for measuring
quantities of heat are based on the ideas collected in article 18.
For a description of apparatus and methods, the reader may con-
sult Preston’s THEORY oF HEAT or any of the larger works on
experimental physics. We shall assume that he is familiar with
these methods as well as with the ordinary facts concerning
specific and latent heats.

21. The unit of heat defined above has been in use for a long
time but has never been thoroughly satisfactory because of the
difficulties in using it exactly. Several other units have been
used, and some are now (1899) under discussion; but, for the
present, we need not consider any except the mechanical unit, to
which we shall now turn our attention.

Mechanical Production of Heat. The Mechanical
Equivalent

22, As stated in article 13, heat may be produced by doing
mechanical work, or expending mechanical energy. We may, for
instance, heat two bodies by rubbing them together, all the work
being done against friction and leaving the bodies, finally, with
no more kinetic energy than they had at the start, but with
a higher temperature. We may also produce other effects
commonly caused by a supply of heat. A case in point is Davy’s
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‘ice-rubbing experiment,” in which two pieces of ice were
melted by being rubbed together, while isolated, as far as possible,
from the transmission of heat from outside bodies.

23. Since we have means of measuring both work and heat, we
may investigate the amount of heat produced by a known
quantity of work. Such experiments were first accurately
performed by Joule, in his celebrated researches on the Mechanical
Equivalent of Heat, the publication of which was begun in 1843.
The conclusion to be drawn from his experiments was, that a
unit of heat required for its production the expenditure of a
definite number of units of mechanical energy, no matter in what
particular way the work was done, i.c., the energy expended.
The more accurate the experiments, the more nearly equal were
the quantities of heat produced by equal quantities of work. The
hypothetical generalization of this result is, that however the
work may be done, fo produce a unit of heat always requires exactly
the same amount of work, or that heat and mechanical energy are
equivalent. The number of units of work needed to produce one
unit of heat is known as the mechanical equivalent of heaf, or
Joule’s Equivalent. It is commonly denoted by the letter J.

Later experiments have confirmed the conclusions from Joule’s
work, and have left his value of J sensibly unchanged. If our
units are the gram calorie (10° to 11°) and the erg, the value of
the mechanical equivalent is J=42x 106, very approximately.

24. Work may also be obtained by using up heat, and though
it is here not so easy to make a quantitative test of the ratio of
transformation, it is universally accepted as an exact law of
nature, which has no exceptions, that heat and mechanical
energy, that is, power of doing mechanical work, are equivalent in
the sense that if either is produced at the expense of the other,
the ratio of the quantities in question is always the same.

Heat a Form of Energy

26. We thus reach the conclusion that a quantity of heat, as
we have defined it, is not a substance, but a quantity of energy ;
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for ‘energy’ is only another name for ‘power of doing work.’
This leads us, furthermore, to a new unit of heat. If, instead of

the calorie, we take -a unit times as great; if, in other

_1
42 x 108

words, instead of the gram, we take gram of water in

1
42 x 108
defining our unit, the result will be that one unit of heat is
equivalent to one erg, and we may consider a quantity of heat as a
quantity of energy measurable in ergs, the erg being the common
unit of energy.

In future we shall, in all our theoretical work, consider heat to
be measured in ergs, as by doing so we simplify the writing of
our equations. The calorie need be mentioned, only when it is
necessary to refer to the results of experiments in which the
calorie has been used as the unit.
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the billiard balls or the thermodynamic system, we have as the
conditions of equilibrium not equations but inequalities. Another
simple example of the same thing is that of a mass of gas, con-
fined in a cylinder and kept in equilibrium by a force acting on
the piston : we shall have an equation or an inequality according
as the piston is movable without or with friction.

40. The systems which can not be treated by assuming them
to have equations of equilibrium are numerous and important ;
but the theory which applies to them (which has only recently
begun to be developed) is more complicated than in the opposite
case, just as dynamics is more complicated for frictional than for
frictionless systems. We shall make it a fundamental condition
of the validity of our work THAT ALL THE SYSTEMS HERE-
AFTER CONSIDERED SHALL BE SUCH AS HAVE EQUATIONS OF
EQUILIBRIUM, and we shall develop the theory only for such
systems.



CHAPTER IV
THE FIRST LAW OF THERMODYNAMICS

Work done on a System during a Change of State.
Specification of the Outside Actions. Generalized
Coordinates and Forces.

41, Let us consider a system with n+1 degrees of freedom,
the independent variables which determine its state being

Z, 2, 2" ... 2 T.

Let the system be subject to outside actions of a mechanical
nature only ; that is, such actions, that when a change of state
occurs, no energy enters or leaves the system except in the
form of heat or mechanical work.

Let the symbols

&', &', 8", ... &, 8T,

represent any infinitesimal changes in the variables, consistent
with the nature of the system; these variations are all inde-
pendent, since there are n+1 degrees of freedom. During this
change of state, the outside actions will do on the system a
quantity of work 8/, which depends on the nature of the
change, and which may be written

=X'8+X"8 + ... X 8"+ 98T, ..cccevvvunans )

The strength of the outside actions—their effectiveness in doing
work—is completely characterized by the work they do on

the system during a given change in the variables, for instance,
Iol!‘-cw‘ P '7 L g l‘ l‘;&' . :"_'t r '{. 0’ . }3 ‘fu 3 "L’ N SRR



28 THEORY OF THERMODYNAMICS - [cHAP. XV.

a unit change in each one. Hence the actions are defined, as
regards intensity, by the coefficients X', X", ... X*, 9. If the
forces acting on the system have a potential, the work they do
on the system, as it passes from a state 4 to a state B, may be
written

W:=[j(:’, ... T)]: .................... (8)
In this case we have
o]/ 4
Xr= Sy teereeees et 9)

and the coefficient X* is the rate at which work is done on the
system as r* changes, while all the other variables, including the
temperature, are constant. But in general, the work will not
be independent of the path, and we must write

W= (@, 2 o 2% T),y (&5 T e 25 T)y Yo oo 9P

where ¥, ¥, ... * are quantities which are not determined by
the instantaneous values of z, £, ... 2, T. In general, therefore,
the complete expression for any one of the coefficients X* is

- (3.

where the subscripts indicate, that during the change in z%, the
other variables 7, 7, ... z°, the temperature 7, and the quantities
¥, y’, ... 4 are all kept constant.

42, Each of the terms in equation (7) has the dimensions of
a quantity of work, namely, [#] or [mFt-2].* If the variable =
be a length, the corresponding coefficient X will have the
dimensions of a force [#1~!] or [mit=2]: but if it have other
dimensions, if it be, for example, an angle, a surface, or a
volume, the term X8z (or .78T) will still have the dimensions of
a quantity of work.

43. We may, if we choose, imagine the system to be connected,

% In the statement of dimensions, ¢ has the usual meaning of time, and is
not meant to indicate the temperature on the Celsius scale.
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by some sort of mechanism, the nature of which need not
concern us, to n + 1 sliding pieces, which can move independently
along fixed straight bars, the mechanism being so devised, that
the distances of the sliding pieces from fixed zero points on their
respective bars, are proportional to the values of #, 2, ... 2%, T,
and that any changes of #, etc., which are compatible with the
nature of the system, are also possible for the mechanism.

Now let the actual outside actions be replaced by a number
of foreces on the sliding pieces, each proportional to the appro-
priate one of the quantities X', X", ... X", .9. If the scales of
«, ete., and of X', etc., have been properly chosen, the system
will now, by virtue of the connecting mechanism, be influenced
in the same way by these forces as it was by the outside actions
which they have replaced: for if any or all of the variables
change in value, the work done on the system will be the same
for this new set of forces as for the original set of actions, what-
ever their nature may have been.

We may call the variables 2, 2", ... 2", T, the generalized
coordinates of the system, the name being drawn from the repre-
sentation of their values as lengths. We may also call the
coefficients X', X", ... X", .9, the generalized forces acting on the
system, although, in reality, they do not necessarily have
dimensions of mechanical forces.

The state of the system is now defined by the generalized
coordinates, #, 2", ... 2", T'; and the outside actions are completely
characterized by the generalized forces, X', X", ... X", .9

44, As an illustration, let the system consist of a soap bubble,
which we will suppose so light that it is not influenced appreciably
by gravity. The only outside action on the film is the pressure
of the air inside it. We may consider the state of the film as
defined by its area a (including both surfaces), and its temper-
ature T. Let a little more air be forced in slowly, so that
the area increases by &z ; and suppose that the temperature is
kept constant. The work done by the outside action is

W =A43a.
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Here 4 is the generalized force tending to increase the variable
a, and we may easily find a simple interpretation of it. Since
we have disregarded the form of the film, and considered its
area to be the only thing of importance for our purposes, we may .
just as well imagine the film stretched between two rails 4 cm.
apart, with a fixed perpendicular cross-piece at one end, and a
frictionless sliding cross-piece at a distance of a cm. from it ;
so that the area of the film is, as before, a cm2. An increase of
area 8o involves a motion outward, of the sliding cross-piece,
through 8a cm. The generalized force 4 is now simply the force
which must act on the slide to balance* the pull of the film, or
the tension of one surface of the film per centimetre length of
the edge on which it is pulling. In other words, 4 is numerically
equal to the surface tension of the film. In this example, the
generalized force has the dimensions of force + length, [#1-2] or
[mt=2]; and its product by an area 8a has the dimensions of a
quantity of work, namely, # or [mi#~2%].t

Choice of Independent Variables. Internal and
External Variables

46. The fundamental condition, that the system shall have
equations of equilibrium, may be written
X =f@&, 2 .. 2% T),
X"'=f", o', ... = T),

X =", &, ... 2, T),
J=f &, 2, ... 2%, T).

These equations, in which the forms of the functions f must be
determined by experiments on the system, fix the values of the

* Within an infinitesimal amount.

+The work done in compressing the air has been left out of account,
because the air does not form a part of the system.

w:i"umw Aku"'ﬂm, '»l.m ol whr Aaccownd |




45] FIRST LAW OF THERMODYNAMICS 31

generalized forces needed to preserve equilibrium for any given
values of o, o, ... 2", 7.

We shall assume that there is only a single set of outside actions,
or a single set of generalized forces, which will preserve any given state
of equilibrium. So far as we know, it is always possible to select
the variables in such a manner that this assumption is correct.
This, in mathematical terms, is equivalent to saying that the
functions f are single-valued. It is obvious, too, that they are
never infinite for any attainable values of the variables, since
we have no means of producing or maintaining infinite forces.
They are, moreover, continuous ; for any discontinuity of f, f”,
etc., could arise only from a physical discontinuity in some of the
outside actions. Such discontinuities do not exist in nature—
a proposition which is approximately equivalent to the statement
that finite effects imply finite causes, and vice versa.

46, It is conceivable that after we have selected a set of
variables which satisfy the condition of determining a unique set
of forces, X', X", ... X, .7, for any state of equilibrium, some
of these variables may not, in varying, involve any outside work
at all” If this is the case, certain of the coefficients in the
expression for the work,

SW=X'8 +X"8" + ... X"+ J8T, ............ (11)

will be constantly zero. We shall call the variables for which
the work-coefficients, or generalized forces, are constantly zero,
internal variables, while the others will be called external variables.
‘When it is necessary to distinguish between the two classes, we
" shall denote them by the symbols 2, and =, respectively. The
generalized forces corresponding to them will be denoted by X,
and X, The expression for the work will then take the form

W = X3, + I8+ D Xty v, (12)
where ZX,S:&,= 0y berierenernietierenenenas (13)
so that this term may be omitted from the expression, unless we

choose to write it in for the sake of indicating al/ the independent
variables.

'mr;{;.:;m a Facunm %wm n»wyk whin uu m o) 1 rnr)u% A
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The equations of equilibrinm may now be written
X ,=fdo Ty -y Ta T -y T),

I=f@o o -1y Ta To -y T).

It is often convenient to select the quantities to be used as
independent variables, in such a way that a variation of the
temperature alone involves no outside work, or so that

J=0,
T being now an internal variable. Variables so chosen are called
normal variables: such a choice seems always to be possible.
With normal variables, the expression for the work done on the
system by the outside actions, during any infinitesimal variation
of state, becomes

W= ZX&z; ............................ (15)
or, if there are other internal variables than 7,
LY/ 5030, € - J U (16)

Unless the conirary is stated, we shall always assume that normal
variables are used for defining the state of any system that we may
have under consideration.

Further Remarks on the Generalized Forces.
Work Diagrams

47. The values of X and . occurring in equations (7),
(11), (12), (15), (16) are not, during any real modification, -
&/, &, ... &", 8T, such as would satisfy equations (10) and (14).
The values of the generalized forces which appear in equations
(14) are those needed to preserve equilibrium; and if, at any
instant, X', X", ... X, .7 had the values given by equations (14)
for the instantaneous values of /,, ..., 7, ..., 7, the system would
be in equilibrium and no change would go on.

If the values of X', X", ... X* .9 differ only very little from
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those needed for equilibrium, a very slow process will go on;
and, conversely, if a very slow process is taking place, the values
of X', X", ... X", .7, at any instant of it, must be very nearly
equal o those needed to bring the process to a standstill at that
point.  This would not be true if kinetic energy were entering
into the problem ; for in the case of a moving dynamic system,
the forces needed to preserve any state of equilibrium do not
necessarily bring the system to rest if it reaches that state ; the
accelerations vanish, but the velocities do not.

All the changes of state which we shall consider, have, how-
ever, the property that the velocities (in the general sense of
rapidity of change) vanish with the driving forces, and that there
is nothing analogous to the inertia of masses, which, in dynamics,
brings acceleration into such prominence.

48, If the system has only two degrees of freedom and the
variables are normal, the expression for the work done by the
forces during a finite change of state may be written

B Xy,
W:=L1\£dx, ........................... (17
X

and we can represent this quantity of work graphically. Let us
lay off z and X (Fig. 3) as rectangular coordinates in a plane.

Fia. 3.

Let the original state 4 have the coordinates z;,, X;, and the
final state B, the coordinates 2, X,. Let the curve 4CB represent

the values which the force X assumes, as the variable z is passing
(o]

* God ucw-fh: Jaithumal &*vwf’w-‘ﬁm vﬁ goau .
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through the values between z; and z,, The work done on the
system, during the process, is evidently equal to the shaded area
under the curve 4CB.

If the system change its state in such a manner, that while =
passes back through the values between x, and z,, the generalized
force X assumes, successively, its former series of values in the
inverse order, the same curve will be traced out, but in the:
inverse direction, BCA. The work done on the system will be
the negative of its former value, that is, the negative of the
numerical value of the shaded area.

X X
c B s~ B
N > =
D A /4
X ] x
FiG. 4. Fi1G. 5.

If the point which represents the simultaneous values of z and
X move from 4 to B along the path 4CB and then return by
the path BDA (Fig 4), the total work done en the system is
equal to the shaded area enclosed by the curve. It is positive
¢if the point goes round the area clockwise, and negative in the
fopposite case, as is seen upon comparing the two values of the
force (and of the elementary work), for a given value of z, and
for the two directions of rotation,—remembering that work is
being done on the system, while  is increasing. :
If the diagram has several loops (Fig. 5), the total work is the
sum of the areas of the loops which are traced clockwise, minus
the sum of the areas of those traced in the opposite direction.
Any process by which a system, however many be its degrees
of freedom and whether the variables used be normal or not,
after leaving a certain state, returns finally to the same state, is
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called a cyelic process or a cycle. In order to avoid circumlocution,
the closed curve, representing the process on the diagram, is
also spoken of as ‘the cycle’ For such a system as the one
we have just been discussing, namely, one with two degrees of
freedom and one mechanical action, we may announce the pro-
position : During any cycle the work done on the system is equal fo
the area of the cycle, the signs of the areas being interpreted as
above.

49, It is to be noted, that the diagram drawn with z and X as
its coordinates is not a complete representation of the process,
though it is of the work done ; for it tells us nothing about the
values assumed by the other independent variable, T. If all the
states through which the system passes were states of equilibrium,
we should have an equation of equilibrium

D G TC | YT (18)

connecting z, T, and X, and we could deduce from this an
equation

giving T in terms of z and X. Hence z and X would define the
state of the system completely, and a diagram in z and X would
be a complete representation of the process. But no real process
‘does consist of states of equilibrium ; for a state of equilibrium
is, by definition, one in which the outside actions are such that
nothing occurs to disturb the existing condition of affairs. To
 make the system traverse a given continuous series of states,
i.e., of sets of simultaneous values of the variables «/, ", ... z*, T,
outside actions, X', X”, ... X, .J, must be applied, which differ,
at any instant, from those needed to preserve equilibrium. If
the forces differ only infinitesimally from their equilibrium values,
the process will go on with an infinitesimal velocity : infinitesimal
alterations in the forces will be sufficient to arrest the process
or to reverse its direction. '
Amny process, of which the direction may be reversed by infinitely
small modifications of the outside actions, ts called a REVERSIBLE
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PROCESS. The successive states of which it is composed are
infinitely near to a series of states of equilibrium ; hence, during
a reversible process, the generalized forces have values which
approximate, within any desired amount, to the values deducible
from the equations of equilibrium

X =f @& .. T),
.X" =f"(z', Z”, . {I}", 1‘),

In the case of a process of this nature, performed by a system
with two degrees of freedom and one mechanical outside action,
the diagram in z and X comes infinitely near to being an exact
" representation of the whole process. For any process which is
slow enough to consist nearly of states of equilibrium, i.e, to be-
nearly reversible, the diagram is nearly a complete represen-
tation. s

50. To illustrate what we have been saying, let us suppose
that the system is a mass of gas confined in a cylinder by a
frictionless piston, of area S. For such a system, the volume
and temperature are normal variables, since if the volume is ~
constant, a change in the temperature does not involve any work.
Suppose the motion of the piston, during a change of volume,
to be so slow that the force acting on it, at any time, is sensibly
the same as would be needed to keep the piston at rest if stopped
at that instant. This force is evidently equal to pS; what must
we take as the generalized force, X ?

During an increase of volume &», the piston moves out through
a distance 8v/S, and the work done on the system is

3W=-%”-ps= -pde.

But this, by definition, is equal to X8z, or in the present case, to
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X8v. Hence the generalized force is (- p), and during a finite
change of volume, the work done on the system is

we- _ |
== PV (21)

In drawing the work diagram (Fig. 6) we find it convenient to
use, as coordinates, v and p instead of » and (—p). The signs of

FiG. 6.

areas on the diagram must now be inverted, i.c., an area that is
continually on the right of the tracing point, as the point moves
forward during the process, is to be interpreted as work done by
the system against the outside actions, instead of as work done
. on the system by them. The actual value of the area cannot be
found unless we have a complete knowledge of the path, or, in
other words, of the simultaneous values of p and v, or of T and
», throughout the process. '
Let us assume that the gas is subject to Boyle’s Law, and that
the temperature is measured by a thermometer filled with this
same gas. We then have the equation

where R is a constant depending on the mass of the gas. From
this equation of state, we obtain at once

RT

p=-
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whence the expression for the work done on the system during
any finite change of volume becomes

W= - r%'dz-. ......................... (23)

This equation shows us the value of the work done by the
outside pressure on any gas which obeys Boyle’s Law, during a
change of volume from 7, to v,, the change taking place so slowly
that the kinetic energy of the gas may be neglected.

Isothermal changes are of especial importance. In this case,
T is constant, so that it may be taken outside the integral sign,
and equation (23) reduces to

= —RTr——RTl e (24)

a result which we often have occasion to use.

The gas has been imagined as contained in a cylinder, but this
restriction is unnecessary. During any deformation of the con-
fining envelope, we may imagine the change of volume to take
place by a gradual, simultaneous motion along their normals, of
the infinitesimal surface elements AS, which are so small that
they may, at any instant, be treated as plane and as describing
cylinders. For each element taken separately, we have

AW = - pAvw,
and for them all taken together,

aW=I AW = - I pAr,
8 L]

the integration being a summation for all the elements, i.e., over
the whole surface. But p is the same for all the elements, since
we are disregarding gravity. Furthermore,

I Av=tv:
8
hence we have, as before,
W= =Py o, (25)
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It follows that equations (21), (23), and (24) are entirely general,
and hold for any sort of change of volume, when the other
conditions in each case are satisfied.

51. As yet, nothing has been said about the scales of the
diagrams. The gaseous system which we have been discussing
will serve to elucidate this point. Let the diagram be so drawn
that one centimetre represents a pressure of one kilogram per
square metre, or a volume of one cubic metre. The area of the
diagram, in square centimetres, represents the work done,
measured in units, each of which is of the magnitude

ii‘lgéxlm.s or 1kg x1m.;

the work is, then, given in kilogram-metres.

If the scale, in centimetres, had been one megadyne per square
centimetre and one litre, an area of one square centimetre would
have represented a work of

%ZL;B x 103 cm.8, or 10°dynesx1 cm.,

i.e., one thousand megergs. This illustration will serve to show
the reader how, in any other case, the diagram as drawn is to
be interpreted.
52. We have been discussing the changes of state of systems
which have only two degrees of freedom, and we have already
_seen (Art. 37), that if a system has more than three degrees of
freedom, changes in its state can not, in general, be represented
on a single diagram. But if we construct as many plane
diagrams as the system has independent variables,* taking as
coordinates the pairs of values (z/, X'), ... etc., (J, T), we have,
during any change of state, curves traced out which are suscept-
ible of the same interpretation as those on the single diagram.

*For an internal variable the curve will be merely a piece of the x axis;
hence the internal variables may be left out of account.
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Hence the proposition stated at the end of article 48, regarding
a system with two degrees of freedom, may be extended to
any system which is subject only to mechanical actions, and we
may say: During any cyclic modification of the state of a system.
which is subject only to mechanical actions, the work done on the
system by the outside actions is equal to the sum of the areas of the
curves described on the n+1 plane diagrams, by the points having for
their coordinates the simultaneous values of

@, X'), ... ete., (J, T).

Use of the Generalized Forces as Independent
Variables

53. The use of the generalized forces, as coordinates in
diagrams representing work done, suggests that they may be
used as independent variables in determining the state of the
system, in place of some of the original variables, #/, 2, ... 2", T.
Let us see whether they may be so used, and if so, under what
conditions.

The values of the forces X', X", ... X", .J, which are needed
to preserve equilibrium, are, by hypothesis, given wunequivocally
by the equations

X =f @, .2 T),
X' =f"d, o, ... 2" T),

where the forms of the functions f', f”, ... f*, f* are to be
determined by experiment.

If none of the functions f’, f”, etc., are identically zero, that is,
if all the variables, including 7, contribute, when varied, to the
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expression for the work, we may deduce from these n+1
equations another set, of the form,

? =¢ (X, X", ... X" ),
&' =¢ (X, X", ... X", 9,

" =¢nX', X, ... X*, ),

T=¢(X, X", ... X", J);
and a question arises, at once, as to the significance of these
equations.

The functions f, f*, ... f f*, which occur in the equations of
equilibrium, are continuous and finite, throughout the whole
possible range of our experiments. They are also, by assumption,
single-valued : our theory is applicable only to systems for which
a given state, as a state of equilibrium, requires a single, unique
set of outside actions or generalized forces.

This, however, does not imply that the functions ¢', ¢", ... ¢", ¢*
are single-valued: there may be more than one state of equilibrium
which is compatible with a single set of outside actions, and we
shall illustrate this in article 55. But though the functions ¢
may be multiple-valued, we shall assume that, in general, the
values, even if infinite in number, are discrete—that they do not
form a continuous series. In physical terms, this is equivalent to
saying, that though there may be more than one state in which
the system can be kept in equilibrium by a given set of outside
actions, any state which differs only infinitesimally from one of
these, will not, in general, be a state of equilibrium, under the
same outside actions. We may put it in still another way : any
infinitesimal displacement of a system from a given state of equi-
librium, requires, in general, an infinitesimal change in the outside
actions, if the new state is to be one of equilibrium; or, each
separate state of equilibrium, no matter how nearly alike the
states may be, requires its own separate set of outside actions.

We may illustrate our meaning in a very simple case. Let us
consider a function of a single variable, X =/f(z); and let this
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equation -be also put in the form z=¢(X). Let X=f(z) be
plotted as a curve (Fig. 7). The condition that f(z) is single-
valued, means that a line parallel to the axis of X can cut the
curve in only one point at most. A line parallel to the axis of z
may, however, cut the curve in any number of points; but these
points will, in general, be discrete. It may happen, that for
particular values of X, the curve X =f(x) has horizontal straight
pieces af finite length ; hence, for these particular values of X, =
may have an infinite and continuous series of values; but this can

not happen in general, i.e., for all values of X, but only for certain

particular and discrete values.* Hence we may say, that not only

does each value of z give a definite value of X, but each value of
X, except certain particular discrete values, gives one or more

definite values of x, which do not form a continuous series.

X

F1e. 7.

We shall assume, though we cannot demonstrate the propos-
ition, that similar statements may be made with regard to
functions of any number of variables. If this is true, any set of
values of the generalized forces will, in general, determine one or
more discrete states of equilibrium, although for certain particular
values of X', X”, ... X", J, these states may form a continuous
series. Hence, so long as we are considering states of equilibrium, the

*This is true, at all events, if f{x) is an analytic function; and the
results of physical experiments may always be represented by analytic
functions to any required degree of approximation, or, for physical
purposes, with practical exactness. '
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generalized forces X', X”, ... X*, .7 may, except for particular
values, be used as independent variables in determining the state
of the system. When so used, they are called the inverse variables
of the former set. .

When a system is in a state of neutral equilibrinm, it may have
a continuous series of states of equilibrium extending through a
finite range, and the forces may be the same for all these states,
though they need not be. If the forces are the same, their values
are a set of the particular values mentioned above. The same is
true in pure dynamies : if a system has equations of equilibrium,
any set of forces may determine one or more discrete states of
equilibrium which are compatible with this set of forces; and so
long as this is the case, the forces may be used to define the state
or states of equilibrium. But in the particular case of neutral
equilibrium, there may be a continuous infinity of states which
satisfy the conditions.*

b4. If, among the n+1 variables @, 2, ... 2", T, there are
m + 1 internal variables, the set of equations (26) is reduced in
number to n —m, because m+1 of the functions f are incapable
of experimental determination. Hence the equations (27)
are also reduced in number to n—-m. We have, in other
words, n —m known relations, connecting the 2n -m+1 quan-
tities

2. a2, o, .., T, X, X, L X T

Let us take, as m+1 of the n+1 quantities needed to deter-
mine the state of the system, the internal variables «’,, 2", ... 2™+,
the original variables being, for the present, supposed not to
be normal. It remains to select n—m more quantities, which,
with those already selected, will suffice to fix the state of
the system. For this purpose, let us take the generalized
forces corresponding to the n—m external variables, namely,

*It may, of course, happen, either in dynamics or in thermodynamics,
that under the action of a given set of forces no state of equilibrium at all
is possible.
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50 Jong. then, as we are wearing ouly states of equilibrium,
we may, under the restriczions of artizle 33, use, as independent
vanables, the » 4+ 1 guanures

Lot g ™ X X, ... X .
If the original variak.es were cormal, that i if T was among
the internal variabies, the new set will he
Lol g X o X o X", T.
In either case, the new set of quantities may be called the inverse
variables of the original ser

The n - m known relations of the set (23) give us, for the
determination of r', ... /*~=7%_ T, the equations

L= (70 2y .. 7~ X X7 . X", j)’

..................................................................... ; . (28)
/"---lc=¢‘._-_l(7’;, -"'".'s --e r-]i' -\"o X",, a.- X._-_ln '-/)a

T=¢(2p 7" ... £~ X'p X7, ... X" =71, J),
or, in the case of normal variables,

E= (e 7y e 7 Xy Xy o X= T),




54] FIRST LAW OF THERMODYNAMICS 45

The definition of an internal variable was, that it was one for
which the work done on the system, during a unit change in
when z; alone was varied, was zero. It by no means follows, that
when we have selected our new set of independent variables, the
work done on the system under the same circumstances will be
zero ; for the quantities which are kept constant are not the same
in the two cases. It may, for instance, very well happen, that
though the original variables were normal, the inverse variables
are not. In the familiar case of a mass of gas, of which the state -
is defined by the normal variables v and 7', the inverse variables,
(—2p), and 7, are not normal ; for a variation of the temperature
at constant pressure is accompanied by a certain quantity of out-
side work. ,

55. We will now illustrate, by a simple example, some of the
statements made in articles 53 and 54.

Let the system consist of a mass of fluid, kept at the constant
temperature 7', below its critical temperature. If the fluid
remains homogeneous, the normal variables » and 7' are enough
to determine its state, and they give a unique determination of

Fia. 8.

the generalized force (—p), needed to preserve the system in
equilibrium at any temperature 7' and volume ». This means.
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that on the diagram drawn in terms of v and p (Fig. 8), no line
drawn parallel to the axis of pressures can cut the isothermal line
more than once, so long as the isothermal refers to a homogeneous
mass of fluid: it is immaterial whether the fluid is all liquid, as at
points to the left of B, or all gaseous, as at points to the right
of F.

If we accept the idea of James Thompson, that a fluid can pass
continuously, and without ceasing to be homogeneous, from the
liquid to the gaseous state, and wvice versa ; the eondition that v
and 7' shall give a unique determination of p, is satisfied if the
isothermal has the familiar form shown in the figure ; for each
value of v there is one and only one value of p, under which
the fluid can be in equilibrium.

The inverse variables are (—p) and 7'; and it is obvious, that
if the isothermal line has the form shown, a given value of p may
keep the fluid in equilibrium at any one of three different volumes.
This is possible for all values of the pressure greater than that
indicated by the point C and less than that indicated by the point
E; for any horizontal line, drawn between these limits, cuts the
isothermal line in three distinct points. Outside these limits a
given pressure determines a single volume, at which the system
may be in equilibrium at the given temperature. In the present
case, therefore, we have a system, such that the variables v and 7'
satisfy the condition of giving a unique determination of the out-
side actions needed for equilibrium, but where—as we have said
will be the case in general—the generalized forces may determine
one or more states of equilibrium, but not a continuous infinity
of states.

Now, suppose that the restriction to homogeneity be removed,
and that superheating of the liquid and supersaturation of the
vapour be prevented. The form of the isothermal line—the
empirical, as distinguished from the so-called theoretical isothermal,
of which we have been speaking—is shown by the broken curve,
ABMDFG. The condition that a given set of values of the
normal variables shall suffice for the unique determination of the
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single outside action ( —p), is evidently fulfilled, since the curve
cannot be cut by a line parallel to the axis of pressures in more
than one point. It is also true, that in general a given set of
values of the inverse variables (—p, 7)) determines a single
possible volume at which the system can be in equilibrium. But
suppose the pressure applied to the surface to be exactly equal to
the saturated vapour pressure at the given temperature : this par-
ticular set of values of p and 7" does not determine a single value,
nor even a number of discrete values, of the volume at which the
system can be in equilibrium. The fluid may, on the contrary,
be in equilibrium, at any volume whatever between that indicated
by the point B and that indicated by the point F. This con-
tinuous infinity of volumes is not, however, possible in general,
but only for this ene particular value of the pressure: at the
given temperature, no other value of the pressure, so far as we
know, and certainly no other in the immediate vicinity of this
one, will permit a continuous infinity of states of equilibrium.
The remarks made in article 53, as to the nature of the functions
f and ¢, are illustrated by these two cases of a homogeneous and
a heterogeneous fluid.*’

It is necessary to state, as we have done, that the fluid is or is
not homogeneous at volumes between B and F; if the question
be left open, the' variables » and 7' will not suffice for our
purposes. We know by experiment the form of the empirical
isothermal line, and we also know of the existence of parts, at
least, of the theoretical isothermal, between B and C and between
F and E ; for superheated liquid and supersaturated vapour give
points on these parts of the curve. The liquid may remain in
equilibrium in its superheated state, under a smaller pressure than
its natural vapour pressure at the given temperature, i.¢., under a
smaller pressure than would be necessary at the same temperature,
if the liquid bad partially evaporated and passed over into a
heterogeneous mixture of liquid and vapour. The variables » and
T, therefore, do not suffice for a unique determination of the
pressure needed for equilibrium, unless we include in the definition
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of the ¢ given system ’ a statement that the fluid is or is not to
remain homogeneous throughout its whole possible range of
volumes.

Let z be the fraction of the whole mass that has changed
discontinuously, from the condition or phase denoted by points to
the left of B, into a different fluid phase. If we start with the
liquid, so long as the mass remains homogeneous we have x= 0.
We might also start with the vapour, and the fact that the mass
remained homogeneous might then be represented by the equation
z=1. We may thus look upon z as the quantitative represent-
ation of a property of the system, a property that remains
constant if no portion of the mass changes from one phase into
another.

If the system is split up into two phases, liquid and vapour, =
varies as the relative masses of the two phases vary. But if the
fluid is to be in equilibrium, z cannot be treated as a variable
independent of v and 7': for, at a given temperature, the total
volume is determined by the masses of the two phases present,
and vice versa.” If the fluid is not in equilibrium, z may, at a given
temperature and volume, have any value between zero and one,
just as during the evaporation of the superheated liquid inside a
rigid envelope, the pressure increases continuously till a new state
of equilibrium is reached. During this change of state, z might
be considered as an independent internal variable : the considera-
tion of such explosive processes is, however, beyond the scope of
our present work. Enough has already been said to show that
cases may be found, in which the remarks made in articles 53 and
54 have simple physical interpretations.

Heat absorbed by a System during a Change of State

B6. During a change of state, a system will, in general, beside
the work done on it by the outside actions, receive a certain
amount of heat from the surrounding bodies : this heat may, of
course, be either positive or negative. We shall count heat taken
X dminid Ty T amran of ity ahasebed o g oo by B
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in as positive, just as we counted work done on the system as
positive. #e shall assume, as the result of experiment, that the
heat absorbed during any small change of state is equal to the heat
given out when the same change takes place in the opposite direction,
the outside actions being the same in the two cases.

The quantity of heat absorbed during an infinitesimal variation
of state, may be written in the form

8Q=K'8 +K"8"+... K"+ C2T. ............. (30)

The quantities K', K", ... K" are called the thermal coefficients
of the system for the variables #, o, ... z". Any one of them is
equal to the heat absorbed by the system during a unit increase
of the corresponding variable 2, while all the other variables,
including the temperature, are kept constant. The coefficients K
may also be called the latent heats of the system for the variables
in question, the name being suggested by the fact that the heat
is absorbed without changing the temperature of the system.
The coefficient C, is called the thermal capacity of the system for
constant variables.

This absorption of heat may also be expressed in terms of the
inverse variables, and we may write

8Q= D Mox,+ 2 L8X,+ Cr, 5T oo (31)

or, in the case where 7' is the only internal variable in the
original set,
8Q=L8X"+ L'8X"+ ... LP8 X"+ CifT. ............ (32)

The interpretation of the thermal coefficients M', M", etc., and
L, L, ete, is the same as before: M represents the heat
absorbed by the system during a unit increase of z, when all the
other independent variables are constant; L represents the heat
absorbed during unit increase of X, and C’,‘,‘, that during unit
increase of 7|, all the other independent variables in each case
being kept constant. The quantities # and L may be called
the latent heats, and Cy ., the thermal capacity, of the system, for

constant inverse variables.
D
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These latent heats and thermal capacities, K, L, M, C, and
Cy,., are not, in general, constants, but functions of the inde-
pendent variables used. It would be easy to deduce formulae
for the transformation of one set of coefficients into the other,
but we shall not stop to do so, as the results are not of immediate
importance.

67. To return to our old illustration; let the system consist
of a unit mass of fluid. During any infinitesimal change of state,
the heat absorbed will be

8Q=K80+COT, .o (33)

where K is known as the latent heat of expansion, and C, as the
specific heat of the fluid at constant volume. If the change is a
displacement from a state of equilibrium, we may, by using the
inverse variables ( - p) and 7, express the same quantity of heat
in the form

8Q=—Lop+CB8T,y.....cnccvvnreinnnnene. (34)

where L is the latent heat of decrease of pressure, and C, is the
specific heat at constant pressure.

If the change considered be isothermal, so that 87'=0, we
have the relation

or K=-L —> e (36)
T

The First Law of Thermodynamics

58. Let a system which is subject to purely mechanical outside
actions undergo any sort of eyelic modification of state: let the
total area of its n+1 work diagrams be different from zero. A
certain amount of work, positive or negative, will be done on the

system. We may represent this work by (I)le, the parenthesis

around the integral sign indicating summation along a closed
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path. During the same time, a certain positive or negative
quantity of heat, (j)dQ, will have been absorbed. The total
energy absorbed by the system is

(j)(dW+dQ)=Ae.

Since the process is a cyclic one, the system is finally left in
exactly its original state. Let us assume that Ae is less than
zero, or that we have received from the system more energy
than we put into it, without leaving it in a state in the slightest
degree different from its original state. The cycle may be
repeated indefinitely, so that we may get from the system an
infinite quantity of energy. If, on the other hand, Ae be greater
than zero, we may, by indefinite repetition of the cycle, pour
into the system an unlimited quantity of energy and yet leave it,
finally, in its original state.

If Ae could be less than zero, we should have the means of
producing perpetual motion : hence the conviction that perpetual
motion is impossible, which has been forced upon us by the
failure of innumerable devices for producing it, carries with it
the conviction that Ae can never be less than zero. We have no
such striking evidence to show that it is impossible to sink an
indefinite quantity of energy in any given system of bodies.
We assume, nevertheless, that this, too, is impossible: the con-
clusion from the two assumptions taken together is, that Ae is
always equal to zero for any cyclic process.

The principle known as the FIRST LAW OF THERMODYNAMICS
is contained in the foregoing assumptions; it states that no such
result is possible as those we have deduced from the supposition
that Ae is different from zero. The correctness of the principle
is verified, indirectly, by all the experiments which have been
made to test the conclusions which can be drawn from it. It
may, therefore, be considered as sufficiently established as an
experimental law, and we now go on to put the statement of
the principle in more convenient shape.
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59. From the assumption that Ae is always zero we deduce at
once the statement, that for any cyclic change of state,

(I)(dW+ GQ) =0, e (37)

which is a mathematical expression of the law.

Let 4 and B (Fig. 9) represent any two states of the system.
Let I and II represent any two paths by which the system may
pass from 4 to B. Let III represent some path by which the
system may return from B to A4 : we assume that it is always
possible to find paths leading in both directions between any two states
whatever, and we see no reason to doubt the theoretical correct-
ness of this assumption. To make the matter more concrete and
clearer, a diagram has been drawn, but the reasoning is not
limited to systems which have only two degrees of freedom.

If we now turn our attention to the cycle made up of the trans-
formations I and III, we see that we have the equation

r(dW'+ dQ), +J"(dW+dQ),,,=(j)(dW+dQ)=o. (38)

For the cycle made up of the transformations II and III, we
have, in the same way,

[(am+a@u+ [ @ +a@u=paw+ig-o. ...)
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A comparison of these two equations shows that
'B B
L(dW+ dQ),=L(dW+ AQ)ur+ eervererereenenn(40)

The paths I and II are any two paths whatever, by which the
system can pass from the state 4 to the state B: hence the
value of the integral '

j:(d;m dQ),

or the amount of energy in the form of heat and work, received
by the system in passing from one state to another, is quite
independent of the path, that is, of the nature of the inter-
mediate states through which the system passes. It can, there-
fore, depend only upon the variables which determine the
original and final states, and it may evidently be expressed as
the change in the value of a certain function of the independent
variables, as the system passes from one state to the other.

If we let € be this function, the above statement may be ex-
pressed by the equation

r(dW+ Q) = g = €4 werrreerreereeeenn (41)

The generality of the assumptions from which the existence of
the function e was inferred shows that it must be single-valued:
it must also be continuous, for a discontinuity would imply a
finite absorption of energy during an infinitesimal change of state.
This function is known as the INTERNAL ENERGY of the system
and equation (41) may be read: During any change in the state of
a system, the sum of the work and heat put into the system is equal to
the increase of its internal emergy. This may be considered as
another form of statement of the first law of thermodynamics.

The addition of an arbitrary constant to e leaves equation (41)
unaltered ; hence ¢ is not defined in absolute value but only as
regards its changes. It is allowable, therefore, to choose any
state we please as a normal state, and to call the internal energy
zero, when the system is in that state.

“ﬂt\r%&« w hy
C’v(t't oiun(rc hl»lh() .
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Equation (41) may be written,

in which form we shall make constant use of it.

The Conservation of Energy

60. Up to this point, we have not admitted to consideration
any but mechanical actions, so that only mechanical (potential)
energy and heat have been treated. We have now to remove
this restriction from the generality of our reasoning.

A body or system is said to contain energy, when, by virtue of
the condition it is in, it is capable, under appropriate circum-
stances, of doing mechanical work while undergoing some modifi-
cation of state.* This work may go to producing kinetic energy,
which we have excluded, or to producing potential energy ; for
instance, by bending a spring, raising a weight, or compressing a
mass of gas. It has already been shown that a quantity of heat
is to be looked upon as a quantity of energy, because we can
convert heat into mechanical energy, and wvice verss. But that
these two forms of energy are not the only ones, is already
implied by the restriction of our reasoning to them alone.

When the powder in a gun is ignited, the bullet receives
kinetic energy equivalent to a certain quantity of the potential
energy which has so often been mentioned. This kinetic energy
is far greater in amount than the thermal energy of the igniting
spark ; it must have been stored up in the form of chemical energy
in the powder, which, upon ignition, was subject to a chemical
change, and so developed the hot gases that propelled the bullet.

A small body, charged with electricity and placed in a field of
electrostatic force, tends to move in the direction of the lines of
force; by utilizing this motion we may get useful mechanical work
from the body. If, on the other hand, we connect the charged

*That a modification of state is an essential part of the phenomenon,
results from the conclusions of the preceding three articles.
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body with the ground by means of a fine wire, the electricity
‘flows into the earth,’ as we say, and the wire is warmed.
After this heat has been developed in the wire, the body is in a
neutral state and no longer tends to move if placed in & uniform
field : it has lost its electrostatic energy, which has been converted
into heat.

Somewhat similar remarks may be made in reference to the
motions of magnets in a magnetic field. Electric, thermal, and
luminous radiation may also be made to produce work and heat.
Evidently, then, there are various other kinds of energy beside
the two to which we have hitherto confined our attention.

61. The greatest advance made by physics in the present
century has consisted in the recognition of the fact, that all forms
of energy are equivalent in the same sense in which heat and work
are equivalent, and that only transformation and not creation or
destruction of energy is possible. This general proposition was first
clearly announced by J. R. Mayer in his paper entitled ‘Bemer-
kungen iiber die Krifte der unbelebten Natur,” published in .
Liebig's Annalen der Chemie for the year 1842. Joule had, at
that time, already begun his experiments on the mechanical
equivalent of heat—experiments which he afterwards extended to
several other forms of energy. The proposition is known as the
principle of the CONSERVATION OF ENERGY. Like all general
principles in physics, it is an hypothetical generalization from a
number of facts, small at first but alwdys increasing: no case is
known in which it is contradicted by experiment; it is universally
accepted as an exact law of nature, and may be considered as
sufficiently established.

Re-statement of the First Law of Thermodynamics

62. We must now turn our attention to systems that are
capable of absorbing or giving out other forms of energy than
heat and mechanical energy ; and here we come upon a funda-
mental difference, between the energy represented by a quantity
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of heat, and some or all of the other kinds of energy that we meet
with. A given quantity of kinetic or potential energy may
always, by friction or otherwise, be converted into heat. Of a
given quantity of heat, however, not all can be used up in pro-
ducing mechanical work, but at most, only a definite fraction,
which, as will be shown in Chapter VIII, depends on the tempera-
ture of the body from which the heat is taken and on that of the
coldest bodies at our disposal. The remainder of the heat merely
passes from a high to a low temperature, and continues to exist
as heat; so that, at the end of the process, the sum of the heat
remaining and the work done is equal to the original quantity of
heat. All the other known forms of energy may, like mechanical
energy, be converted into heat, completely. Some of them may
also be converted completely* into mechanical energy, while
mechanical energy may be completely * converted into any one of
them. This fact may be expressed by the statement, that these
latter kinds of energy have the same value as mechanical energy ;
heat has a lower value, because complete conversion is possible
only in one direction. Electrostatic energy, for example, has the
same value as mechanical. We may bring together two similarly
charged bodies, doing work against the electric repulsion and thus
increasing their electrostatic energy : by letting them return to
their former positions, we may get back the work that we had to
do in order to bring them together. When the charged bodies
are in their nearest positions, we may, if we choose, change the
electrostatic energy of the system into heat ; for if we connect
them to the ground by a wire, the bodies lose their electric
properties while heat appears in the wire ; but it is impossible to
change all of this heat back into electrostatic or into mechanical
energy. The energy of magnets in a magnetic field has also the
mechanical value, and the same is, apparently, true of the electro-

* Absolutely completely, only if our apparatus is ideally perfect ; for in
actual practice, all these conversions are attended by the appearance of a
small quantity of heat, which may, however, be reduced indefinitely by
perfecting the apparatus and methods for the conversion.
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kinetic energy of the electromagnetic field about a constant
current.

There are, on the other hand, several other kinds of energy
beside heat, which, as far as our present experimental means of
conversion go, seem to have lower values than potential and
kinetic energy. Thermal, luminous, and electrodynamic radiation
come under this head. Whether these have the same value as
heat or not, is a question that has not yet been investigated com-
pletely. We shall exclude from consideration all forms of energy
which we do not know to have the same value, either as heat or
as mechanical energy.*

Henceforth we shall assume, that, whatever be the outside
actions to which the system under consideration may be subject,
these actions are of such a nature as to add to or take away from
the system only those forms of energy that are of the mechanical
value.

63. Let us suppose that for each separate outside action which
can add or subtract non-mechanical energy, we imagine such a
machine constructed as shall be capable of performing the com-
plete transformation, in both directions, of this form and
mechanical energy. After what has been said on the values of
the various forms of energy to be considered, it is legitimate to
assume that such machines are possible, theoretically. Let these
machines supply to or abstract from the system, during any
change in its state, the various quantities of energy, while them-
selves actuated by the application of mechanical forces from
outside, or doing work against such forces. The system may now
be treated as composed of the original system plus these ideal
machines, and the machines may be imagined to be incapable of

-

* This seemingly fundamental difference between heat and energy of the
mechanical value, appears to be connected with the fact that, whereas the
other forms of energy may be more or less permanently isolated in space,
heat cannot be so isolated, but continually and inevitably leaks from bodies
of high to bodies of low temperature, without our heing able to find an
effective meaus of preventing the leakage.
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in themselves absorbing or giving out any energy, i.e., to act simply
as couplings between the system and outside world. The only
effect of the machines is, that through them we may, by the appli-
cation of mechanical forces, produce all the results that are
actually produced on the system by the actual outside actions.

It follows, that all the conclusions reached by the consideration
of mechanical actions remain true in the case of a system subject
to any actions whatever, provided that no energy of a different
value from mechanical energy or heat enters into the problem.
We may, as before, select a set of variables or generalized co-
ordinates, «/, 2’,...2% T': the strengths of the outside actions may
be characterized by the generalized forces X', X”,...X" J, which
are connected with 2, 2,... ", T by equations of equilibrium. The
forces X', etc., may, with 7' and the internal variables, be used in
treating of states of equilibrium, as a set of inverse variables (article
53). The graphical representation of work done on the system
is now extended to include all the energy concerned in the process,
with the exception of heat (articles 48-51).

The first law may still be stated in the three equations.

(I)(dW+ AQ) =0, oo (43)
j AW +dQ) = eg= 1y orrerrrrrreren (44)
8e=8Q+ W, v (45)

" where # now refers to all energy except heat, and e is still a
function of the variables which determine the state of the
system, and has the same properties as before.




CHAPTER V
THE PRINCIPLES OF THERMOCHEMISTRY

The Problem of Thermochemistry

64. The first law of thermodynamics has an important appli-
cation in Chemistry, and in order to give the reader an idea
of the practical meaning of the theory which has been set forth
in Chapter IV, we shall now discuss, briefly, the fundamental
principle of thermochemistry.

The experimental problem is, to find the heat developed or
absorbed by a body, or system of bodies, which is the seat of
a chemical reaction such as to change the original set of
substances composing the system into a different set. The
thermal investigation of such physical reactions as solution,
evaporation, and fusion, may be included under the same heading;
for the principles that regulate the thermal phenomena are the
same, whether the reactions take place according to the law
of definite proportions or not.

A given final state of the system may often be reached from
a given initial state by more than one path ; that is, through more
than one series of intermediate states. Let the system in its original
state consist, for example, of one gram molecule,* or 98 grams,

*A ‘gram molecule’ of any chemically defined substance is a number
of grams equal to the sum of the combining or atomic weights of the
elements of which the substance is made up. For example: one gram
molecule of carbonic acid gas is 44 grams; for the chemical formula is
CO,, while the combining weights of carbon and oxygen are 12 and 16,
respectively, giving CO,=12+2x16=44.
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of sulphuric acid (H,;SO,=2x 1+32+ 4 x 16=98), and ten gram
molecules, or 180 grams, of water (10H,0 =10 x [2 x 1+16]=180):
let the two be separate and at the temperature of 20° C. In
its final state let the system consist of a homogeneous mixture
of the sulphuric acid and the water at the same temperature
of 20°. We may mix the two components directly and measure,
calorimetrically, the heat absorbed : but we may also reach the
final state by two or more steps, and measure the heat for each
step. One way of doing this is to mix one gram molecule of
sulphuric acid with five gram molecules of water, and, after
finding the heat absorbed in this process, to mix the resulting
solution with the remaining five gram molecules of water.

Such processes of mixing may be represented by equations
in which the chemical symbol of a substance stands for one
gram molecule of it. The equations in the present case are as
follows :

H,S0, + 10H,0 = H,80,10H,0,
if the mixing be done all at once; and

H,S0, + 5H,0 = H,80,5H,0, }
H,S0,5H,0 + 5H,0 = H,S0,10H,0,

if it comsist of two separate steps. A compound symbol
(H;80,6H,0) is here used to denote a mixture of the two
substances represented by the two parts of the symbol.

There are many cases where a given final state, which, as far
a8 is shown by the chemical equations, might be reached directly
from a given original state, cannot, in practice, be reached by a
single reaction, and where the path must be composed of several
independent steps. It may, nevertheless, be important for us to
know what the thermal phenomena would be, if the direct
reaction were possible: we need, then, to know how the quantity
of heat developed or absorbed depends on the path, when the
original and final states are given.

65. Let us suppose that, whatever the reaction may be, it
involves no outside work ; this is very nearly the case when the
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substances composing the system are enclosed in a rigid envelope,
so that no change of volume, and therefore no work by or against
the outside pressure, can intervene. If the action of gravity,
and of all other outside forces that can act at a distance through
the envelope, is zero or negligible, the reactions inside the rigid
envelope may be regarded as involving no outside work at all.
Many chemical reactions are actually carried out in this way,
inside a rigid containing vessel.

The influence of the nature of the path on the absorption of
heat, is shown at once by the equation

r(dW-l- 4Q)= €<,
4
Since dW is zero, we have

I:d(2= == Qe (46)

But it has already been shown that ¢, and ¢, depend only on the
coordinates of the states 4 and B; hence Q:, the total heat
absorbed, does not depend on the path at all, but is the same
for all paths.

To return to the water and sulphuric acid: if we let @, @,
and @, be the quantities of heat absorbed in the three separate
mixings, we may express the whole course of the reactions,
including the absorption of heat, by the equations

H,80,+10H,0=H,S0,10H,0+@,, ............. (47)
H,80, + 5H,0=H,S0, 56H,0+ Q,, }
H,80,5H,0 + 5H,0 = H;80,10H,0 + @,
Our principle tells us, that if the experiments have been accurately

carried out and the process of mixture has not caused any
sensible change of volume of the substances,

Ql = Qg + QS' ........................... (49)

If the first reaction had been impossible, and the mixing had
had to take place in the two stages, the equations (48) and (49)
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would, nevertheless, have enabled us to state with certainty the
amount of heat @,, which would have been absorbed had the
direct reaction been possible.

66. If the reaction is aecompanied by work of the outside
forces, the relations are not so simple, and the absorption of heat
is, in general, not independent of the path. We must now use
the general equation

[amra-o-a,

or W’+Q:=e,—e‘,, ......................... (50)

and not the heat alone, but the sum of the heat and the work,
is independent of the nature of the intermediate states through
which the system passes. The term ‘work’ is here used in the
general sense, to include every sort of energy, except heat, that
may enter or leave the system in consequence of the outside
actions ; in practice, the work to be considered is usually solely

mechanical. For all paths during which |d/# is the same, the
heat |dQ will also be the same, just as it was in the particular

case treated in article 65, in which the work was zero.

The condition that the work shall be independent of the path
is satisfied if the outside forces of all sorts—the generalized
forces—have a potential.

67. One particular case of such forces is that of article 65,
where the work was constantly zero, and therefore independent
of the path along which the system was led from the state A4 to
the state B. There is another case of great practical importance,
in which the forces have a potential; that, namely, where the
only sensible action of outside bodies consists in a uniform,
constant, normal pressure on the surface of the bodies composing
the system. The work done on the system by such a pressure
has the value

B B
Wf: - Lpdv= —pLdv:p(vA — V).
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Since v, and v, are fixed by the initial and final states, the work
w : is independent of the nature of the intermediate states. In
equation (50), the terms # :, €z and ¢, are all independent of
the path; hence the same is true of Q: , the heat absorbed by
the system during the reaction. If our experiments upon the
sulphuric acid and water had been performed, not as before in a
closed vessel, but in an open vessel and subject to the constant
pressure of the atmosphere, equation (49) would still have been
valid, though the quantities @,, @, and @, would not have had
precisely the same values as before.

The Law of Constant Heat-Sums

68. The vast majority of thermochemical reactions take place,
either in closed vessels at approximately constant volume, or in
open vessels and subject to the approximately constant pressure
of the atmosphere,—gravity, and all other outside actions except
the pressure, being of altogether negligible importance. Hence
all ordinary reactions are subject to the rule known as the LAW
OF CONSTANT HEAT-SUMS which is contained in the statement,
that the lotal heat absorbed, when a certain set of substances is formed
Jrom a certain other set, is independent of the particular nature of the
intermediate reactions. In the few remaining cases, where neither
volume nor pressure is constant, the work done by the pressure
or other outside forces is usually small, in comparison with the
heat concerned in the reaction ; hence the law of constant heat-
sums is sometimes stated a: an exact and general law. It is,

general principle expressed by the equation
WZ"'Q::‘B— €4

which must, in strictness, be used whenever the outside forces
do not have a potential. In such cases we have

B
Q:::,—e‘—de ........................ (51)

’
4

*G K. Kew 1840 ,
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where (¢; — ¢,) is a constant, but Id W must be computed for each

separate path : the changes in the absorption of heat, in changing
from one path to another, are the same as the changes in

'B
—de.
A

It is to be noticed, that here, as usual, the assumption is made,
that the kinetic energy of the system is negligible,—as it nearly
always is in practice. It would be easy, if it were worth while,
to modify the theory, so as to make it applicable to the cases in
which the kinetic energy is not negligible.

69. It often happens that the initial and final states are at
the same temperature. If the outside forces have a potential,
so that the nature of the path is of no importance and the law of
constant heat sums is valid, the absorption of heat is the same
as if the reaction had gone on isothetmally at the temperature
of the initial and final states, the heat developed or absorbed
being taken away or supplied, as fast as was necessary to prevent
any change of temperature. In this case, the quantity of heat
absorbed may be called the heat of reaction at the temperature T*.
We may also, in making calculations with regard to the experi-
ments, treat the whole process as if, at every instant during the
reaction, the outside conditions of pressure, etc., had been such
a8 would just keep the system in equilibrium at the temperature
T, in the state it had at the instant in question. It is thus
allowable to make the calculations with regard to a simplified
ideal process, different from the actual one, but giving, under the
condition that the outside forces have a potential, the same total
absorption of heat as the process which has really taken place.

* It is usual, in thermochemistry, to reckon heat given out as positive.
We have changed this sign, for the sake of consistency with our previous
notation. In taking numerical data from accounts of thermochemical
measurements, it is to be remembered that the heats of reaction there
are given quantities of heat given out.
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Dependence of the Heat of Reaction on the
Temperature

70. We will now use the remarks of the last article as an aid
in finding how the heat of reaction depends upon the tempera-
- ture when the reaction goes on at constant volume. Let the
initial and final states in one case be 4 and B, both at the
temperature 7. In the second case, let them be 4’ and B’, which
differ from 4 and B, respectively, only in having the higher
temperature I'+ 87, the other coordinates of the first pair of
states being unchanged. Let z be a variable proportional to the
amounts of the reacting substances which have already entered
into the reaction. The two reactions, one leading from 4 to B,
and the other from A4’ to B, may be represented on a diagram

T

’ - ’
A 11 B T+5T

A: I h 5T
; :
H ! x
x Zg
Fia. 10.

(Fig. 10) by the lines I and II. The line 44’ represents a
heating of the system from A to A4’, at constant volume and
with 2 constant, i.e., with no change in the composition of the
substances forming the system: the line BB’ has a similar
interpretation.

Consider a process by which the system passes from the state
A to the state B’. This may take place in an indefinite number
of ways, of which we will consider only two,—first, that by
the path 4BB, and second, that by the path 44'B’. As the
“outside forces do no work, the total absorption of heat must be the

same for both paths. Let the thermal capacity at constant volume
E

.

T, cr»wl‘;a.xf‘#’am&
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of the materials composing the system be C), in their initial
state of combination denoted by z,. In the final state, after the
reaction has gone on so as to change the composition from that
indicated by x, to that indicated by #; let the thermal capacity
of the system be ;. Let the heat of reaction at the temperature
T, be A, and at the temperature 7'+ 87, be A+8X. The quantity
of heat absorbed in the first process is

A+ C2T,
and in the second,
Ci8T + (A +38A).
But, by the conditions of the problem, these two quantities of
heat are equal, so that we have the equation

A+ CT =\ +6) + C,8T,
or _") R S (52)

Equation (52) shows how the heat of reaction at constant volume
is affected by a change in the temperature at which the reaction
goes on. :

If the difference of temperature is finite, we get by integration,

Te

Ary=As, +I (Cp=C) AT, oo (53)
n

where, in order to perform the integration, the difference of the
two thermal capacities, C,— C), must be known as a function
of the temperature. In many cases, C, and C, are so nearly
constant, that we have, practical]y,'

Ar=Ag,+(Co= C)(Ty =T orverernnn (54)

I, trnolont frewre. T1, The other important class of reaction, is that of the re-
actions at constant pressure. The same notation may be used
as before, except that we will let €', and C’, be the thermal
capacities of the system, at constant pressure, and in the states
of combination denoted by », and z,, respectively. A certain

'g- mw“nﬁ, ?r"u»i. Awe . 1858
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amount of outside work will, in the present case, be involved in
<ach one of the four modifications 44', 4'B’, AB, and BB'. Let
these quantities of work be represented by #,, W, W, and
W, By Equation (50), (Art. 66) we have

W5 +Q} =¢5 — ¢, =const.

If we apply this equation to the two paths 44'B’' and 4BBE,
we see that

Wi+ Wy+C' 8T+ A+8M) =W+ W, + A+ C'fT.

But since the pressure is constant and the total change of volume
is the same for both paths, we have

W +Wy,=Ws+W,

a8 in any case of outside forces which have a potential.
A comparison of this equation with the last shows that

(A+8X) + " 8T =\ +C",dT,
A .o
whence %,)fc 2= C'he eeveeerenes eeveesnesnn(55)
For a finite difference of temperature, this takes the form
Ty
May=As, +j (€= C AT oo (56)
n

or, if ("; and (', may be treated as constants,
Ary=An +(Cy=C)(Ty=T1) oo (57)




CHAPTER VI

>

CALORIMETRIC PROPERTIES OF FLUIDS

Specific Heats of a Fluid

72. Having devoted Chapter V to an extremely simple
example of the application of the. first law of thermodynamics.
to chemistry, we will now give a few more illustrations, by
discussing some of the calorimetric properties of fluids.

Let the system to be treated consist of a unit mass of a fluid,
its state being defined by the normal variables » and 7. Let
the fluid be heated at constant volume from T to 7'+ 87, the
indicator point moving along the line 4B (Fig. 11). The heat
absorbed by ‘the fluid during this change of state is equal to:
C,8T. Let the fluid now expand isothermally, till its pressure
has fallen from p+8p to p, the volume increasing from » to
v+8, and the indicator point moving along the isothermal
line from B to C. Let no outside’work be done by or on the system
during this ezpansion. 'This may be accomplished in the following
manner : the fluid, at the temperature 7'+ 87 and the pressure
P+8p, being enclosed in a vessel of the volume #, this vessel
is suddenly placed in communication with a second, empily
vessel of the volume &. Let both vessels be impervious to-
heat. The fluid expands suddenly to the volume v+8»; but
as it is not expanding against any outside pressure, it does no
external work. The part of the fluid, which remains in the
original vessel does, to be sure, some work on the part forced
into the second vessel ; but the work done by one part of the.
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fluid is done on another part, so that the external work is zero. -
The fluid acquires a certain amount of kinetic energy during
the sudden expansion, but by the friction of the eddy currents
produced, this kinetic energy is very soon converted into heat.
The part of the fluid remaining behind cools off somewhat,
because it has been doing work on the other part; and this
second part is warmed by the work done on it. If the whole
mass be pow left to itself, it will soon come to a uniform
temperature, which will, in general, not be precisely the same
as the temperature 7'+ &7, before the expansion. If the fluid
be next heated (or cooled) till it has the temperature I'+ 87, it
will, during this change of temperature, absorb a quantity of
heat A%. For we have the equation (article 57)

8Q=2A8v+ C,3T,

v &
[
Fie. 11

giving the absorption of heat during any infinitesimal change
of state, in terms of the changes of the independent variables v
and T'; and since the outside work is zero for the process
represented by the line BC, the final result of the passage from
B, at the temperature T'+87, to C, at the same temperature,
is the same, as regards absorption of heat, no matter what the
path may be, and is, therefore, the same for the actual process
as if the change had taken place isothermally.
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The sum of the work and heat absorbed, in the passage of
the system from the state 4 to the state C, is, therefore,

r(dW+ dQ) = C,3T + Abs,

Let the fluid be again taken in its original state, but let it
now be heated at constant pressure to the temperature 7'+ 87 :
the heat absorbed during this process is C,8T, and the work
done on the fluid is —pdv; so that, for this direct passage from
A to C, we have the equation

jo(dW+ dQ) = C,3T - pbw.

These two expressions must, by the first law, have the same

value ; hence
C8T + Ay = C,8T — pér,

or C,-C,=(p+X\) (g_”T); ..................... (58)

73. The ordinary gases obey the law pv=RT appfoximately,
when not too cold or too dense. For one of them, we have

)5 e

and for such a gas, equation (58) reduces to

0,—0,=R+%2. ......................... (59

For the gases that follow Boyle’s law, the value of A is very
small. This has been shown, experimentally, by allowing the gas
to expand into a vacuum and observing the change in its tempera-
ture, a measurement which makes it possible to calculate what the
absorption of heat would have been at constant temperature. The:
first experiments of this sort were performed by Gay-Lussac in
1807.* He connected a vessel filled with gas to another, empty

*  Memosres d Arcueil,” 1 (1807) ; Gilbert’s Annalen, 80, p. 249 (1808) ;
reprinted in Mach’s Principien der Warmelehre, Barth, Leipzig, 1896; also
translated in Harper’s Scientific Memoirs, 1, New York, 1898.
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vessel of the same volume and at the same temperature, each
vessel being provided with a thermometer. He found, that after
an equilibrium of pressure had been established, the temperature
in the first vessel had fallen just as much as that in the other had
risen; the gas had therefore, on the whole, no tendency to
become warmer or cooler during the expansion; i.e., no supply or
abstraction of heat was needed to make the expansion isothermal.
In 1844, Joule* performed somewhat similar experiments. He
immersed the two vessels in the water of a calorimeter, and found
that the free expansion of the gas had no appreciable effect on the
temperature of the water : this result showed that the quantity A,
if not zero, was too small to be detected. Neither of these
experiments was capable of great accuracy, but a different and
. finer method, used later by Joule and Thomson (Lord Kelvin),t
showed that A, though small, has a measurable value. The
theory of these celebrated ‘plug experiments’ of Joule and
Thomson will be discussed later: for the present, we shall merely
assume that A has been shown to be a very small quantity for
the ordinary gases, at ordinary pressures and temperatures.
For such gases, then, we have very approximately

Oy = Cy=Recveeeeerreereenerenn e, (60)

74. Equation (60) suggests a method of measuring the mechanical
equivalent of heat. If C, and C, have been measured calori-
metrically, and if R is known in mechanical units, from the
numerical values of the quantities appearing in the gas equation
pv=RT, we have the value in mechanical units of the quantity of
heat C, - C,.

Another way of putting the same thing, is to say that the heat
absorbed, during a rise of temperature at constant pressure, is
greater than that absorbed at constant volume, the difference

* Phil. Mag. (3), 26, p. 369 (1845) ; Scient. Papers, 1, p. 172.

+ Kelvin’s Math. and Phys. Papers, 1, p. 333 ; reprinted from various
papers in Phil. Mag. and Phil. Trans., 1852-1862; also reprinted in
Harper’s Scientific Memoirs, 1.
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being the heat-equivalent of the work done by the gas in expand-
ing against the outside pressure. This statement assumes the
truth of the first law, and assumes, also, that A, the latent heat
of free expansion, is zero. The method has been used for finding
J, the mechanical equivalent of heat ; in fact, the first published
value which could make any claims to accuracy, was obtained in this
way by J. R. Mayer, in 1842.* It has often been said that Mayer’s
value, computed in this way, could make no claim to recognition,
because the experiments of Joule, and of Joule and Thomson, on
free expansion had not yet been performed. Mayer himself,
however, states distinctly,t in a letter of September 12, 1841,
that he was familiar with the results of Gay-Lussac’s experiments,
although, in the paper mentioned above, he does not discuss the
question of the absorption of heat during free expansion. The
data at Mayer’s disposal were imperfect, and his value of the
mechanical equivalent (365 m.kilogr.) is much too small.

76. For getting an approximate idea of the behaviour of the
gases, it is often convenient to consider an IDEAL GAS, which differs
only slightly in its physical properties from the gases actually
existing, but which follows simpler laws. This ideal or perfect
gas is usually defined by two conditions, each of which is nearly
fulfilled by oxygen, hydrogen, nitrogen, and some others of the
more common gases. These conditions are: I. The gas follows
Boyle’s Law exactly, i.e., (pv),=const.; and II. The heat. it
absorbs during free expansion is zero, i.e., A=0.

During a free expansion, the only change in the internal
energy of a fluid is due to the absorption or emission of heat.
If the free expansion is isothermal, the quantity of heat absorbed

by unit mass is I)tdv, hence we have
B
i =j db,
A4

If A=0, it follows that ez;=e¢,, or in other words, the internal

* Liebig’s Annalen, 42, p. 233 (1842) ; also Ges. Schriften, 1, p. 23.
+ Ges. Schrifien, 3, p. 128.

-— -

PO ——,
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energy does not change during the change of volume, if the
temperature is constant. Hence the second condition which an
ideal gas must satisfy may be stated as follows: II'. The internal
energy of an ideal gas is independent of the volume, and is a
function of the temperature only. pdv -0

To these two conditions we shall add a third : III. The specific
heat of an ideal gas, at constant volume, is independent of the
volume and the temperature; this also is nearly true for the
more common gases, at ordinary pressures and temperatures.

For such a gas we have, as already shown in article 73,

C,-C,=R.

The ratio of the specific heats at constant pressure and constant
volume may, then, be written in the form

R C, C,+R

C‘, = -Fjl' y=-F=

76. Instead of being heated at constant volume or constant
pressure, a fluid may have its pressure or its volume changed
in any arbitrary manner during a rise of temperature. Let C ‘
be the specific heat under these conditions; C is, of course, ;
defined as the rate at which unit mass of the fluid absorbs heat, |
as the temperature rises in the prescribed manner.

p

Fia. 12.

Let a unit mass of the fluid be taken in the state represented
by the point 4 (Fig. 12). Let it be heated till its temperature
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has risen from T to T +38T, and let the volume change, mean-

while, at the rate T’ so that the increase of volume, during

d
the infinitesimal rise in temperature 37, is

v
. 8o =378
The fluid is now in the state represented by the point D,
and the sum of the work done on the fluid and the heat absorbed
by it, as it passes along the path 4D, is
D
j (dW+dQ)=08T—p8fu=(C’—pg;,—
A
Now let the fluid pass from the state 4 to the state D, not
directly but along the path 4BD. During the first part of
this process, the state of the fluid is modified by its having
its temperature raised while the volume remains constant: the
heat absorbed during this part of the process is evidently equal
to COT, while the outside work is zero. During the second
part of the process, which is an isothermal free expansion, the

work is MM zero, and the heat absorbed is Adv, or )tg;, T.

Hence for this second path of the system from the state 4 to
the state D, we have the equation

Ij(dW+dQ)=C,8T+ Aov= (c,+,\ a7)oT.

8T.

D

But since j (@W +dQ) is independent of the path, a comparison
4

of the last two equations gives us

dv
- PdT"C AT
whence
2
C= C+(p+A)dT ........................ (62)
Since gT has any value we please, C also may have any value
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whatever: in other words, a fluid has an infinite number of
specific heats, ranging in value from - ® to + o, and depending
on the rate at which the volume is varied as the temperature
rises. In the particular case where the pressure is constant,
equation (62) reduces to

C,=C’,+(p+)»)(%)p, ........... — (63)

an expression already obtained in article 72.
If we apply equation (62) to the case of an ideal gas, for
which we have the relations

it reduces to
_ d
C=C,+RT ﬂ—,log Povereiiniii e, (64)
T7. Equation (62) may also be obtained in a different form,
in terms of p and T as the independent variables. Let the

fluid, after reaching the state D (Fig. 13), return to its initial

state 4 by an isothermal free expansion, DB, followed by a
cooling at constant pressure, B4. Let the increase of volume,
needed to bring the pressure isothermally from its value at D
back to its initial value at A, be denoted by &v. During the
modification DB, the work done is zero, and the heat taken
in is Adv: during the modification BA, the work done on the
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system is p(dv+d'v), and the heat absorbed is — C,6T. Hence
for the whole process DB.A, we have

8,e=A8'v — C 8T + p(dv + &'v),

whereas, for the change 4D, the alteration in the internal

energy was
Se=C8T - pév.

But since the system has finally returned to its original state,
we have 8¢+ 8,e=0; whence

C8T - pdv+ A8'v— C,8T + p(dv + 8'v) =0,
which gives us at once the equation

C=C,-(p+ A)‘:_;,. ........................ (65)

e ). §), o

since a8 v increases, the pressure is falling from p+8p to p.
Hence equation (65) may be written

Now

d
C=C,+(p+ ")(ap) D e e (66)
In the case of an ideal gas, this reduces to the form m«( %- ) =- -
d
C=C,- RT(W log p. evvvviviennniiiiinnns (67)

Adiabatic Processes

78. When a system undergoes a change of state during which
it neither absorbs nor gives out heat, it is said to undergo
an adiabatic change : such changes are the only ones possible to
a system enclosed in an envelope which is impermeable to
heat. A change of state may also be approximately adiabatic,
if it is so rapid, that during the time it occupies, no appreciable
interchange of heat can take place with outside bodies, even
though there is no impermeable envelope. This is the case, for
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example, with the expansion and contraction of a mass of gas
during the passage of sound waves, the changes being so rapid
a8 to be nearly adiabatic.

If the system under consideration have only two degrees of
freedom, the condition that no heat shall enter or leave the
system reduces the number of degrees of freedom to one: hence,
on any diagram representing the process, we shall have an
adiabatic line, just as we had isothermal lines, under the condition
that the temperature should be constant. It is interesting to
investigate the form of these lines,—especially of those of an
ideal gas.

79. To find the equation of the adiabatic lines, we make use of
the condition, that during an adiabatic process

SQ =0,
which reduces the main equation,
8e=38Q+ W,
to the form Se=3W.

Let the unit mass of fluid have, initially, the volume v, the
pressure p, and the temperature 7, its indicator point being at 4
(Fig. 14). Let it expand adiabatically until it has reached the

r4

Fie. 14.

state v+ &, p+3p, T'+ 87, indicated by the point C, 4C being an
infinitesimal element of the adiabatic line through 4. For this

process we have
Se=0W = —pdu.

d 7t b
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Now let the system pass from 4 to C by a second path: let it
first change its temperature at constant volume, a change for
which /=0, and 8Q=C,8T; let the volume then increase, by
an isothermal free expansion, during which change, W =0 and
3Q=A%v. For the whole path we have, then,

8e=CoT + Adv.

But the change in the internal energy must be the same for
both paths ; therefore we have

CAT + Noo= — pby,
o) - C,
or (61')0 = —m. ........................ (68)

This is the differential equation of the adiabatic lines of the

fluid in the (2, T) plane.
80. Equation (68) might have been obtained from another,

which has already been deduced, without going back to the
beginning as we have done here. We have, namely, the general
equation (see article 76),

C=Cot (P4 0) B (69)

If we now make it a condition, that the volume shall vary with
the temperature in such a way that no heat enters or leaves the

system, we have .
dv [
: C=0, 7= (67')0
and by putting these values into equation (69) we get
(@) S
oT)q p+X
as before.

By similar reasoning, we may reduce equation (66) to the form

(%)q =____C(?:)_, ............... :....(70)

(r+M(3),

. _ 1)p >
frroi 0= c’*(!’“)‘d?\rr-(%tr)a
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which is the differential equation of the adiabatic lines in the
(, T) plane.

Comparison of equations (68) and (70) shows that the differen-
tial equation of the adiabatic lines in the (p, v) plane is

) G 2) 71

(317 1 () EER— (71)

In this equation, the term (%) is always negative ; for in all
r

practical circumstances, an increase of pressure is accompanied
by a decrease of volume, if the temperature is constant.* For
any fluid that expands upon being heated at constant pressure,
C,>C, and since both C, and C, are positive, it follows that
-gl"> 1: hence (%)e has a larger negative value than (%)r, or
the adiabatic lines on the (p, ») diagram fall more sharply, as
they recede from the p axis, than do the isothermal lines.

81. To find the ordinary integral equation of the adiabatic
lines of a fluid, it is necessary to integrate one of the equations
(68), (70), and (71). In general, this is not possible, because we
have not sufficient information to enable us to express all the
quantities that appear in these equations, as functions of the
independent variables. In the particular case of an ideal gas,
however, the problem is much simplified : for such a gas it has

already been shown that v, or g!, is a constant (article 75).
Moreover, since by definition ’

pv=RT,
we have (g_vp) = _%g; _%’.
b 4

Substituting in equation (71), we get

Py - _,P.
@)Q— 777’

* This would not be the case if we could realise the hypothetical third
volume’ indicated by van der Waals’s equation. Bt 4c page 17,
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dividing by p, multiplying by dv, integrating, and removing the-
logarithms leads to the equation

P =K=const...........oreuueennn... (72)

The other two equations might have been integrated by a-
similar substitution, but the result is more simply reached by
elimination between the equations

' =K,
pv=RT.

The equations of the adiabatic lines, obtained in either of these
Wways, are
=K,

K
-1 = =
T B

! Y= %

in the (p, v), (v, T), and (T, p) planes, respectively.*

82. It should be noticed, that to find the pressure overcome by
the gas in expanding, we have used the equation of eonditien sfale
pv=RT simultaneously with an equation, 8¢ =8, which contains,
as one of its terms, a quantity of work done against outside forces.
This is equivalent to assuming that the pressure and the tempera-
ture have determinate values, which are the same, throughout the
gas, as they would be if the gas were at rest, in equilibrium ; for
pv=RT is an equation obtained by static experiments. Hence in ‘
order that the equations which we have deduced in articles 78 to f
81 should have any meaning, the motions of the different parts of
the gas, during the expansion or contraction, must not be so I
tumultuous as to cause any sensible non-uniformity of the
pressure or the temperature throughout the mass, or any vari-

*The reader will notice that in the treatment of ideal gases we have
everywhere assumed, tacitly, that the temperatures are read on a ther- .
mometer filled with the gas in question : this is implied by the use of the

equation pv=RT.
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ation of their values from those that would be found if the gas
were at rest. Similar remarks may be made upon any problem,
in the treatment of which we use an equation of eendition
obtained from statical experiments in connection with equations
_ referring to processes that have a finite speed.

Reech’'s Theorem. Measurement of C,/C,
83. Equation (71) may evidently be put in the form

e
@,

and the fact expressed by this equation is known as ‘Reech’s
Theorem.’

It gives us a simple method of measuring v, the ratio of the
specific heats of any gas at constant pressure and at constant
volume : theoretically, the method is applicable to liquids as well
as gases, but in practice the measurements would be difficult on
account of the small compressibility of liquids. It is only

necessary to measure the quantity (%), first for an adiabatic

change of volume, and second for an isothermal one; or, to
measure the adiabatic and isothermal coefficients of compres-
sibility.

This method, first used by Clément and Desormes and still
known by their names, may be carried out as follows: The gas
is placed in a large receptacle, provided with a delicate mano-
meter for the measurement of the pressure, and also provided with
a cylindrical tubulure, in which a piston may be moved to and
fro so as to increase or decrease the internal volume of the
receptacle. The whole apparatus having come to the temperature
of the surroundings, the pressure is read on the manometer. The
piston is then suddenly forced in a short distance, and the
pressure read again as quickly as possible. If the compression

F

shake
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is rapid enough, it is very nearly adiabatic, the heat received by
the gas from its envelope decreasing in amount, as the compres-
sion decreases in duration. Let the adiabatic increase of
pressure—the difference between the first and second readings
of the manometer—be denoted by 8p,, The gas, having been
warmed by the adiabatic compression, now cools off until its
temperature is the same as at first : meanwhile, the pressure sinks
to the value it would have reached in an isothermal compression
to the volume now occupied. Let the final pressure be read, and
let the difference between this and the original pressure, read
before the compression, be denoted by 8p, Then, since the
decrease of volume &v is the same for both the adiabatic and the
isothermal compressions, we have, by Reech’s theorem,

C, 3p,

O gpy T s (75)
Instead of a compression, an expansion, caused by pulling out the
piston, might have been used just as well; for the only effect of
reversing the motion of the piston would have been to change the
signs of &y, 8py, and &p,.

84. Measurements of y, by the method of Clément and .
Desormes, are subject to several causes of error. In the first
place, Reech’s theorem is deduced only for infinitesimal changes
in volume, whereas we have applied it to finite changes. If we
make the compression or expansion very small, so as to approxi-
mate, as nearly as may be, to the conditions essential to the
validity of the theory, the differences of pressure to be measured
are so small that the errors of reading destroy the accuracy of
the result. It has been proposed, by MM. Maneuvrier and
Fournier*, to avoid this difficulty by measuring g%e for various

T
. &
values of &, and finding, graphically, the limiting value of %, as
T
the change in volume & approaches zero. They seem, however,

*C. R. 138, p. 228 (1896),
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to have concluded, from their experimental difficulties when &y
was very small, that this graphical result was less reliable than
the mean value of y, obtained from experiments with various
small values of &v.

A second error, which has often been neglected, is due to the
fact that the volume of the liquid manometer used, changes during
the compression: the correction needed to eliminate this error
has been computed by M. Swyngedauw.*

85. This error, as well as that due to the difficulty of makmg
an instantaneous reading of the manometer, is ingeniously avoided
in the method of M. Maneuvrier.t The receptacle 4 (fig. 15), of
known volume, is connected by a fine horizontal tube with a
second receptacle B, fitted with a manometer. The tube has a

F1a. 15.

stopcock C, and contains an index I of some light liquid. When
the experiment is to be performed, the piston P is suddenly shot
in a short distance, by releasing a spring : at the instant when the
piston has just finished its motion, the cock C is opened and then
immediately closed again. If the pressure in 4, when the cock
is opened, differs from that in B, the index will move ; otherwise
it will be motionless. The experiment consists, then, in adjusting
the pressure in B, by trial, so that when the piston is shot in and

* Journal de Physique, (3), 8, p. 129 (1897).
1+ C. R. 130, p, 1398 (1895).
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the cock C' opened, the index remains at rest. In this way, the
change of volume due to the motion of the manometer fluid is
avoided, and the readings of the pressure, after the adiabatic
compression, may be made at leisure and accurately. It is thus.
possible to make an unusually exact measurement of 8p,. The
second part of the experiment is done away with, by computing
8py from the known volume of 4 and the area and stroke of the
piston, by means of the equation of eerditien of the gas, if that is
known from other experiments. )

86. Whatever be the particular form of apparatus used, the
compression or rarefaction must be very sudden, or the process
will not be adiabatic: but if the velocity of the piston be very
great, it is questionable, whether the pressure of the gas on the
piston can be regarded as sensibly the same as the pressure else-
where. The pressure on the piston will certainly be somewhat
greater, during compression, and somewhat less, during rarefac-
tion, than in other parts of the receptacle; whereas in deducing
Reech’s theorem we have, by speaking of ‘the pressure of the
fluid,’ assumed that the pressure is uniform throughout the mass.
Whether this cause of error is of sensible importance, might be
determined by comparing the results of experiments on compres-
sion with those of experiments on expansion.

Older and less exact varieties of the method of Clément and
Desormes are described in all the larger works on experimental
physics.




CHAPTER VII
RECAPITULATION

Thermometry—Chapter I

87. We began by defining EQUALITY OF TEMPERATURE by refer-
ence to the thermal equilibrium attained by two bodies, which
when placed in contact, exercise only thermal actions on each
other; and stated the important experimental fact, that fwo bodies
are at the same temperature, if each of them is at the same temperature
as a third.

The elimination of the effects of the presence of other bodies
than the two in question was then considered.

Miscible bodies, when placed in contact, form mixtures. Such
a mixture may attain thermal equilibrium with another body,
not miscible with it ; and we may thus speak of the temperature
of the mixture, as equal to that of this latter body. We have no
means of experimenting on the components in a mixture : hence
the expression ‘temperature of the components’ has no definite
meaning. We agree, nevertheless, as a matter of convention, to treat
the components in a mixzture as having a temperature, which is that of
the mixture taken as a whole. .

‘When a body has attained, so far as experiment can show, a
state of internal thermal equilibriuym, it is said to have a UNIFORM
TEMPERATURE.

88. HIGHER AND LOWER TEMPERATURES are distinguished by
reference to the changes that take place during the equalization

of temperature, and to our sense of heat and cold. We have next
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to devise a set of numbers which shall denote all temperatures
unequivocally, and shall satisfy the ordinary equation

" Ty T)+(Te-T)=(Ts- 1))
Any such set of numbers, when we have a method of determining, at
any time, by experiment, the number corresponding to the tempera-
ture of any given body, constitutes a SCALE OF TEMPERATURE.

Thermal expansion provides us with such a method of experi-
ment, and we select, arbitrarily, some convenient substance for
use as a thermometer, assigning to each volume, length or
pressure, of the chosen substance, a definite number,—the num-
bers increasing as the substance becomes warmer.

The practical choice of a thermometric substance was considered,
and the CELSIUS SCALE and the ABSOLUTE GAS SCALE were defined.
The absolute gas scale is, in reality, a purely arbitrary scale ; for it
makes use of the properties of some one, actually existing, gas,
and no two gases are entirely alike in their properties. We
retain the name because it is in common use.

THE TEMPERATURE AT A POINT in a body is not measurable,
because our thermometers are all of finite size. We use the
expression for the sake of brevity, to denote the temperature
measured by a very small thermometer, filling a hole cut in the
body about the point in question. ’

Calorimetry—Chapter II

89. The consideration of equalization of temperature leads to
the notion of something which, by its presence, influences the
temperature of the body in which it is present.

This notion of a QUANTITY OF HEAT has grown from experience:
to make it precise, we must first confine ourselves to the considera-
tion of purely thermal phenomena ; then we must examine the
particular characteristics of the something that we call quantity
of heat.

The basis of the notion is constancy in total amount. We make, as
a first addition to this, the assumption, that when a body cools
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through a given interval, the quantity of heat it gives out is always the
same,—an assumption that is justified by its results. We have
here to limit ourselves carefully in the choice of the bodies in
question, and our statement, at best, lacks the precision which it
receives later in chapters III and IV.

90. EQUALITY OF QUANTITIES OF HEAT has, so far, no meaning,
except as referring to heat given out by one body and received
by another. As a matter of definition, we agree, that quantities of
heat which are equal to the same quantity are equal to one another.

From this it results, that the heat given out by-a body, in cvoling
through a definite interval, is equal to that received by i, in being
warmed through the same interval.

We find experimentally, that we may treat quantities of heat as
proportional to the masses of a given substance that they can warm
through a certain interval ; and we select, arbitrarily, a standard
substance, a standard mass of it, and a standard interval of tem-
perature,—thus fixing the UNIT QUANTITY OF HEAT.

91. Heat, as thus quantitatively defined, is equivalent to mechanical
energy. The two are mutually convertible—though not completely
in both directions—with a fixed ratio, dependent on the units
used, between the quantity of one expended and that of the other
produced. Heat is a form of energy and may be measured in terms
of the unit of energy.

Thermodynamic Systems—Chapter III

92. We exclude from consideration, all processes that involve an
appreciable amount of kinetic energy.

A GIVEN SYSTEM has certain fixed properties. If it has any
variable properties, they determine the STATE OF THE SYSTEM.
Our whole knowledge of a system, at any instant, consists in a
knowledge of these fixed and variable properties.

‘We represent the variable properties by quantities, or variables,
of which the values define the state of the system. The variables
may be greater but not less in number than the degrees of free-
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dom of the system. If they are greater in number, there exist,
between the variables, a number of EQUATIONS OF CONDITION,
which reduce the whole number of variables to equality with the
number of possible, arbitrary, independent variations of state of the
system. These equations of condstion are inherent in the nature of the
system, and are to be considered as included in the definition of the
¢ given system.’ ‘

AU our work s, of necessity, only approximate: we disregard the
changes of such variables as have only unimportant effects on the
problem in hand.

The changes of state of a system that has only two degrees of
freedom may be simply represented by the motions of a point on
a plane diagram. Any condition, imposed on the mode of varia-
tion of the two variables, reduces the system to one degree of
freedom, and the possible changes of state are then represented
by specific lines on the diagram. If the system has more than
three degrees of freedom, its changes of state can not be repre-
sented on a single diagram.

93. A system is in THERMODYNAMIC EQUILIBRIUM, when all its
variables remain constant. Such equilibrium requires, for its
maintenance, the application of certain ACTIONS from outside the
system : these actions may be quantitatively represented by
mathematical symbols. The system may, like a frictionless
dynamic system, have EQUATIONS OF KQUILIBRIUM connecting the
variables and the outside actions, or it may not have such
equations. ‘We limit ourselves to the consideration of systems
that have equations of equilibrium : in other words,—for all the
systems that we shall consider, a given state of equilibrium requires
a single, definite set of outside actions in order that it may subsist.

The First Law of Thermodynamics—Chapter IV

94, The outside actions, when of a mechanical nature only,
may be completely characterized by the quantities X, «J; which

| stakc
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appear in the expression for the work done on the system during
an infinitesimal change of state ; namely,

W =3 Xo0+.J 8T,
1

where z', 2, ... 2%, T are the independent variables. These quan-
tities, X and .7, may, or may not, have the dimensions of force ;
but, at any rate, each term in the equation just given has the
dimensions of a quantity of work or energy.

By the consideration of an imaginary mechanism, we may
represent the variables as lengths, and the actions as forces;
hence the names GENERALIZED COORDINATES and GENERALIZED
FORCES.

The equations of equilibrium may be written

X' =f(z, 2, ... 2" T),
J=f(z, 2, ... 2", T),
where f, f”, etc., are finite, continuous, and single-valued, and
may be determined by experiment.

For some of the variables, the coeﬂiclents X', ... J may be
identically zero, so that the corresponding equatlons in the above
set are wanting. The variables for which the corresponding
coefficients are constantly zero, are called INTERNAL VARIABLES.
If the temperature is an internal variable, the whole set of
variables is known as a set of NORMAL VARIABLES. /e assume
that it is always possible to select a set of normal variables, no matter
what the nature of the system may be.

In any real process, the forces do mot have values that satisfy the
equations of egquilibrium ; since in thermodynamic processes, where
kinetic energy is excluded, the velocities vanish with the forces.

95. For a system with two degrees of freedom, the work done
on the system is represented by an area on a diagram, of which
z and X are the coordinates. In a cyclic process, the work done
on the system is equal to the area of the cycle on the diagram,
which is counted as positive if traced out clockwise.
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This diagram is not a complete representation of the process,
unless the state of the system is at all times infinitely near to a
state of equilibrium ; that is, unless the process is reversible.

In the case of a system consisting of a mass of fluid, we have

SW = —pév.

For a gas that follows the equation pv=RT, the work done on

the gas, during a finite change of state, is
w= -4,
v

"

If the change of state is isothermal, the work done is
W =RTlog 2.
%

In the case of a system that has n+1 degrees of freedom, we
may represent the work done on the system by areas on n+1
plane diagrams, each having, as its coordinates, one of the
independent variables and the corresponding force.

96. If the system is in a state of equilibrium, the gemeralized forces,
in so far as they are not identically zero, may be used as independent
variables, and we may change from the normal variables,

By 2y e B T &y e 2", T
to the INVERSE VARIABLES
2y .2 X, X0, . X0, T,
which, in general, are not normal, by means of the equations
Ty=p@y . @™ Xy X' ... X* ™, T,

deduced from the equations of equilibrium,
X,=f(@o@s ... ¥ Ty @'y ... 2" "5 T),

—-_—
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The functions f', f", elc., are assumed to be single-valued ; i.e., we
assume, that a given state of equilibrium cam be mainiained only by
a unique set of outside actions. The functions ¢, ¢", etc., are not
necessarily single-valued ; i.e., a single set of oulside actions may
maintain several different states of equilibrium, but not in general o
continuous set of states. .

. 97. We assume as o result of experiment, that during an infini-
tesimal modification of the state of a system, the absolute value of the
heat absorbed by the system is the same in both directions, if the outside
actions are the same. This quantity of heat may be represented
by the equations
8Q=> Koz +C2T,
8Q=, Mér,+ >, L8X,+ C,3T,

according as we are using normal or inverse variables. The
quantities K, L, and M are the THERMAL COEFFICIENTS or LATENT
HEATS of the system for the corresponding variables. The
quantities C, and Oy are the THERMAL CAPACITIES for constant
normal and inverse variables, respectively.

98. We assume, as « hypothetical generalization from experience,
that in any cyclic process

(j)(dW+dQ)=0:

this assumption is known as the FIRST LAW OF THERMO-
DYNAMICS.

We assume, that if a state B can be reached from a state A, the
state A can also always be reached from B, by some process or
other : hence we conclude from the last equation, that

[(amwrag=c-e,

where ¢, and ¢, are the values, at B and 4, of a quantity which
is a function only of the variables that determine the state of
the system. The function ¢ is known as the INTERNAL ENERGY
OF THE SYSTEM.
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The last equation, and the form
SH 4 3Q =3¢,

which it assumes for an infinitesimal change, may be considered
as an enlarged form of the first law. All our work since the
beginning of article 94 is, however, valid only for systems upon
which the outside actions are solely of a mechanical nature.

99. Ezperience shows us the existence of other forms of emergy
than heat and mechanical energy. We assume, as a gemeralization
from experience, that all forms of emergy are equivalent in the
sume sense as heat and work. This assumption is known as the
PRINCIPLE OF THE CONSERVATION OF ENERGY : it is justified
by the fact that no known experiment has contradicted it.

100. Two kinds of energy may or may not be completely
convertible in both directions. All are completely convertible
into heat, so far as we know ; but there are some kinds into
which heat is not completely convertible. We make it «
condition of the validity of all our fulure work, that the outside
actions to be considered are all of such a mature, that the energy
they can supply to the system 1is completely convertible, in both
directions, with mechanical energy.

By the use of appropriate machines, we may replace all the
outside actions by mechanical forces; i.c., all the processes, that
actually do go on, may be produced by mechanical forces,
applied to the system through the mediation of the machines.
Hence all the conclusions, reached in articles 94 to 98, are valid,
even when the restriction to mechanical outside actions is
removed ; and we have

<j)<dW+dQ>=o,

[faw+ig-a-<

SW +8Q =38¢;
as three forms of the first law, holding, with no further assump-
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tions than those already mentioned in articles 96, 97, and 98,
for the changes of state of any system acted on by outside
actions of the nature specified in article 62.

Applications—Chapters V and VI

101. In chapter V, we deduced the fundamental law of
thermochemistry, as an illustration of the foregoing principles.
In chapter VI, we gave further illustrations, by deducing a few
theorems concerning the specific and latent heats of fluids,—
especially gases.



CHAPTER VIII
THE SECOND LAW OF THERMODYNAMICS

Reversible Processes

102. In our study of the mutual transformations of different
forms of energy, which resulted in the enunciation of the first law
of thermodynamics, we found a relation which is satisfied during
any change in the state of a thermodynamic system. The appli-
cations given in Chapters V and VI are enough to show that
certain useful results may be obtained by the use of this law, and
the illustrations might have been greatly increased in number.
But though the first law gives us a relation which holds when
anything does happen, it does not tell us whether anything will
happen: in other words,—it does not tell us the Conditions of
thermodynamic equilibrium. The next subject that presents itself
to us, is the study of these conditions. In this investigation our
attention will be directed mainly upon reversible processes. We
shall therefore add a few further remarks on the nature of
these processes to what has already been said in article 49.

103. No actual process is reversible, if we construe the word
‘reversible’ strictly. If a process goes on in one direction, we
know practically from experience, that it can not be made to go
on in the opposite direction by the application of exactly the
same outside actions, though by changing the actions, we may
" make the system traverse the same series of intermediate states
in the inverse order.

If at every instant during the transformation, the forces
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acting differ only infinitesimally from those needed to keep the
system in equilibrium in the state it then occupies, the process
may be stopped by infinitesimal changes in the forces ; or, the
series of states may be converted into a series of states of equili-
brium. By further infinitesimal changes in the forces, the
equilibrium may be so disturbed that the reverse transformation
takes place. The process may, then, be reversed in direction by
infinitesimal changes in the values of the outside actions. We
agree to call such a process—one at every instant of which the
system is infinitely near to being in a state of equilibrium—a
reversible process or a reversible transformation.*

In strictness, we should say that the only reversible transforma-
tion is the series of states of equilibrium which forms the limit
between the two inverse transformations obtained by infinitesimal
changes, in one direction or the other, of the outside actions.
We do not imagine any system really to undergo such a trans-
formation ; but we may, in a sense, think of such a process, by
thinking of the system as occupying the states of equilibrium
successively, without troubling ourselves as to how it gets from
any one state to the next one.

For the purposes of experimental physics, where we can measure
small, but not indefinitely small, quantities, it is immaterial
whether we use this latter, strict definition of a reversible process,
or use the former, approximate one. It is one of the fundamental
assumptions of physics that only finite causes produce finite
effects. Hence, if the forces acting on a system differ only
infinitesimally from the forces needed to keep it in equilibrium,
any transformation that is actually taking place, can have only
an infinitesimal velocity. The rate of change of the state of the
system is therefore inappreciable, and the system is sensibly in
equilibrium.

104, In a reversible modification of the state of a system, the
work done on the system is the negative of that done on it in the

*Duhem : Introduction & la Mécanique Chimique, Chap. 1X., art. 1.
Paris, Carré, 1893.
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inverse modification ; for the generalized forces are the same, and
the motions of their points of application are equal in amount,
but opposite in sign, in the two cases. By ‘work done on the
system’ we mean the total energy of the same value as
mechanical energy, that enters the system. If we apply, to such
a process, the first law of thermodynamics, in the form

j:(dW+ Q)= 5= €ty rreerrerrersren (76)

we see, that since reversing the direction reverses the signs of
dW and of (e;—¢,), it also reverses the sign of d@, and con-

sequently of IdQ. Hence during a reversible process, the heat

taken in when the process has one direction, is the same as that
given out when it has the other. This statement is, in fact,
an assumption which we used in article 56, in leading up to
the first law, so that it must necessarily result, when we work
backward by applying the first law to a particular process.

Carnot’s Cycle

105. Let us consider a system with two degrees of freedom.
Let the normal variables be z and 7, and let the single outside
action X be of a mechanical nature. Let the system undergo

Fie. 16.

reversible modifications of state, consisting of adiabatic and
isothermal changes. Let the isothermal changes take place at




105] SECOND LAW OF THERMODYNAMICS 97

the temperatures 7', and T, (T > T,), so that no heat enters or
leaves the system except at these two temperatures. Suppose
that the system performs a cycle 4BCDA (Fig. 16), consisting
of the adiabatic change 4B, the isothermal change BC at the
temperature T,, the adiabatic change CD, and the isothermal
change DA at the temperature T;,. The whole process is known
a8 a Carnot Cycle.
By the first law, we have the equation

(J')(dW+dQ)=o. ........................ )

If 4 is the total work given out by the system, and @, and @,
are the quantities of heat absorbed by it at the temperatures T
and T, respectively, we have

A= Qo+ Qoo (18)

106. All experience shows, that in order to transform heat into
mechanical energy, we must have at our disposal bodies of at
least two different temperatures:  that no thermal engine will
take in heat from a given body and convert the whole of that
heat into work ; but that there must always be some colder body,
into which the engine may reject a part of the heat that it has
taken from the hot body.

The assumption that this conclusion from experience is a general
principle, constitutes the so-called SECOND LAwW orF THERMO-
DYNAMICS. It is also known as CARNOT’S PRINCIPLE, though,
strictly speaking, Carnot’s principle related merely to the necessity
of having bodies of at least two temperatures at our disposal. At
the time when Carnot wrote his celebrated paper,* the equivalence
of heat and mechanical energy was not generally recognised, and
Carnot,—using the principle then accepted as true, that heat is
unchangeable in total amount,—based his theory of the heat
engine on the axiom, that in order to do work heat must run
down from a high to a low temperature, just as water may run

* 8. Carnot, Réflexions sur la Pusssance Motrice du Feu, Paris, 1824.
G



98 THEORY OF THERMODYNAMICS [cHAP. VI

down hill and do usefal work on the way, while remaining
constant in amount. In 1851 the same principle was formulated
by Lord Kelvin in the following terms : “ It is impossible, by means
of inanimals material agency, to derive mechanical cffect from any
portion of matter by cooling it below the temperature of the coldest of
the surrounding objects.™® This is equivalent to the following state-
ment : It is smpossible to oblain work by using up the Reat in the
coldest bodies present. :?

We shall now proceed to draw some conclusions regarding the
work obtainable in any cyclic process, and to put the second law
of thermodynamics into mathematical form.

Carnot’s Theorem

107. The ratio, (@, + Q,), @,, of the heat converted into work
and the total heat received, is known as the efficiency or ecoromic
cocfficient of the system, when working as a heat engine in the
manner described in article 105. It may easily be shown, that
this efficiency E has a value which depends only upon the two
temperatures T, and T, and not upon the nature of the system,
so long as the cycle is reversible.

Suppose that a second system, working reversibly between the
same two temperatures T, and T, and absorbing the same amount
of heat Q, at the upper temperature, has an efficiency E, less
than E, the efficiency of the first system. Let (— ;) be the heat
which the second system gives out at the lower temperature.
Then since E'<E, we have

Q+¢; @ +0,
—LOT—? <—“T’, ........................ (79)
0:<0y
and — @+ Q>0 (80)

Let the second system perform its cycle in the reverse direction,
the necessary work being supplied by the first system, working

* Math. and Phys. Papers, 1, p. 179.
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directly. At the end of a single cycle performed simultaneously
by both systems, the source of heat at the upper temperature T,
will have given the quantity of heat @, to the first system, and
received the quantity of heat @, from the second system. On the
whole, it will have neither gained nor lost heat. The source of
heat at the lower temperature T, will have received ( — @,) from
the first, and given (- €',) to the second system ; so that, on the
whole, it will have lost the quantity of heat (— ¢, + @), which,
by (80), is greater than zero. At the end of the process, the two
systems are in all respects in the same condition as before it.

The work produced by the first system is greater than that
which would have been produced by the second if working
directly, and therefore greater than that expended in driving the
second around its cycle in the reverse direction: hence the total
result of the cycle is an excess of useful work, done at the expense
of the heat in the colder of the two sources of heat. But this
result is contrary to the assumed principle of article 106. Hence
if that principle is correct, it is impossible that any system
working as a heat engine between the temperatures T and T,
should have an efficiency less than that of the system we started
with, so long as ils cycle is reversible. In the same way, it may be
shown that the original system can not have a smaller efficiency
than any second. We are tjl_y_g forced to conclude, that all
systems working reversibly, in the manner indicated, between
any two temperatures, T, and T have the same efficiency, and
that thls efficiency is mdependent of everythmg but the two
tempera.tures, so that

Gt (T T o, (81)
[

If one of the two systems compared performs an irreversible
cycle, we must, in order to investigate the efficiency of that cycle,
take that system as the one that works directly. We can then
only show that the efficiency of the reversible cycle is not less
than that of the irreversible one ; we are not able to prove that it
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can not be greater; because, though one of the cycles may be
reversed in direction, the other can not.

The result of the reasoning is, therefore, that for all reversible
isothermal-adiabatic cycles, performed between a given pair of
temperatures by any system or systems whatever, the efficiency
has the same value; and that for any irreversible cycle, the
efficiency can not be greater than this. The part of this statement
that refers to reversible cycles is known as CARNOT'S THEOREM.*

108. In the foregoing reasoning, we have supposed, for the
sake of simplicity, that the systems under consideration had only
two degrees of freedom, and only mechanical outside actions;
but these restrictions are entirely unessential. If the outside
actions on the two systems compared are of different kinds, we
have only to couple the systems together by a machine that can
perform the complete transformation, in both directions, of the
forms of energy concerned. Our reasoning is then applicable
directly. The restriction to two degrees of freedom and to
normal variables, has not entered into the argument at all, and it
was made, merely in order that the whole process might be repre-
sented on a single diagram. Carnot’s theorem, and the corre-
sponding statement referring to irreversible cycles, are therefore
entirely general, and hold for any cycle, performed between any
two temperatures, by any system that has equations of equilibrium
and is subject to outside actions involving only energy of the
same value as mechanical energy.

Efficiency of a Reversible Cycle
109. If we can find the form of the function f(T}, T;) for any
particular reversible cycle, we know its form for all. The simplest
system to use for this purpose, is a mass of an ideal gas, for which
pv=RT,
A=0,
C, = constant.

*Carnot, lc., p. 20.
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‘We may suppose the gas to be contained in a cylinder S (Fig. 17)
fitted with a frictionless piston, which, together with the walls of
the cylinder, is entirely impermeable to heat. The closed end
of the cylinder is to be perfectly permeable to heat, and there is
to be an impermeable cover, C, upon which the cylinder may
be placed. 1If the cylinder be placed on the cover, the gas will
be thermally isolated, and its expansions or contractions must be
. performed adiabatically. If, in addition, we have two bodies,

P22,
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A4 and B, of infinite thermal capacity and perfect conducting
power, so that the temperatures, 7, and T,, of their surfaces are
unchangeable ; we may, by placing the cylinder on one of them,
change the volume of the gas isothermally at either of the two
temperatures. Such an apparatus was first devised—though of
course not constructed—by Carnot,* and is known as a Curnot
engine, whatever be the fluid enclosed in the cylinder.

Let the gas perform the cycle a, b, ¢, d, a (Fig. 18), by
expansions while the cylinder is in contact with 4 and C suc-
. cessively, followed by compressions while it is in contact with
Band C. Since the internal gnergy of the gas is independent oF
its volume, the quantity of heat @, received by it from A during
the isothermal expansion ab, is equal to the work done by the

* Carnot, l.c.
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system during that expansion. This work we have already, in
article 50, shown to be .
rpda=erlog'i2=Q,. ..................... (82)
" 7
The quantity of heat (— Q,), given out by the system to B, during
the isothermal compression cd at the temperature T, is shown in
the same manner to have the value

“pdo=RTJog P = —Qp woovvvvrrrieo (83)
s 4
Hence the efficiency of this reversible cycle is
v, t,
T,log ;: — T,log ;3

E=Q$%= L, (84)
1 T\log 2

Pl N
N S S
% % % %
Fie. 18.

But since the curves a, d and b, ¢ are portions of two adiabatic
lines, we have the relations
Ty =T,
Ty =Ty,
whence, by division
h.%
v 0
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Comparison of this result and equation (84) gives us

E=5;JT=QL+&. ...................... (85)
1 &

This, then, is the value of the efficiency of a system working as
a heat engine round a reversible cycle between the temperatures
T, and T, these temperatures being expressed in terms of the scale of
the ideal gas thermometer.

Absolute Thermodynamic Temperature

110, In the year 1848, Lord Kelvin* proposed an absolute
thermodynamic scale of temperature, which was independent
of the properties of any particular substance whatever. The
definition of this thermometric scale, as modified by its inventor
a few years later, is as follows: “The absolute values of two tem-
peratures are to one another in the proportion of the heat taken in to
the heat rejected in a perfect (i.e., reversible) thermodynamic engine
working with a source and a refrigerator at the higher and lower of
the temperatures respectively.”t On this scale, therefore, any two
temperatures, 6, and 6,, satisfy the equation

b_ 9 (86)

= ) eesesscecsscssssescacsacnns

2 2
where @, and @, have the usual significance.

By reference to equation (85), we see that a similar relation
exists between the numerical values of any two temperatures
expressed in the scale of the ideal gas thermometer, namely,

,_ &

= e ea 87

=0 (87)
Hence any two temperatures, as measured on the ideal gas scale,
stand in the same ratio to each other as if measured on the

* Math. and Phys. Papers, 1, p. 104.
+ Math. and Phys. Papers, 1, p. 235.
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absolute thermodynamic scale. The efficiency of a reversible
cycle may, consequently, be written in the following manner :

g=49*%_06-0 . (88)
A 6,

By fixing, arbitrarily, the value of any given temperature, as the
same on both scales, we may make the numerical values 7" and 6,
which any given temperature has on the two scales, not only
proportional but equal ; and by assigning the right value to this
temperature we may make the fundamental interval from 0° to
100° on the Celsius scale, equal to 100° on the absolute thermo-
dynamic scale. Hereafter, whenever we speak of temperature, we
shall, unless the contrary is expressly stated, always mean the numerical
value of the temperature, measured on this absolute thermodynamic
scale.

It is possible, by using the results of the plug experiments of
Joule and Thomson (Kelvin), to find how nearly the absolute
thermodynamic scale agrees, within our ordinary ranges of
temperature, with the scale of the constant volume hydrogen
thermometer, but we shall defer the theoretical discussion of this
question until later. For the present, it is sufficient to state,
that the difference between the two scales is so small that for
most purposes they may be regarded as identical.

The Equation and the Inequality of Clausius

111, Equation (88), which is due to Clausius,* may be put in
the form

a 6, @, 9.
J¥sieg-2 21 %0, e, (89)
a,” " 4 9," 0,

If AQ be the heat converted into energy of the mechanical
value, @ the heat received by the system when at the upper
* Clausius, Mechanische Wéarmetheorie, 3rd edition, 1, chap. mr.
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temperature 6, and Af the difference between the two tempera-
tures, equation (88) may be written
AQ A6
o
a form in which it is often useful.
For irreversible cycles the equations (88), (89), and (90) reduce
to the inequalities

.............................. (90)

@ 01
%+%2 ........................ (91)

AQ_Aad

237
112, If we have at command several reservoirs of heat at the
temperatures 0,, 6,, 6, etc., we may subject a system to a cyclic
transformation which consists of isothermal changes at all the
temperatures 6,, 6, etc., and of adiabatic changes by which the
system passes from one of these temperatures to another. If the
system has only one outside action, the diagram will be of the
form shown in figure 19. If, however, it has n outside actions,

Fia. 19.

there will be n such diagrams, each with the same general charac-
teristics as the one given.
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By a suitable choice of reversible, adiabatic processes, such as
those indicated by the lines 4,i and d,g, we may divide the whole
cycle into a number of simple cycles, each consisting of only two
isothermal and two adiabatic parts. If we let the system perform
all these simple cycles separately—each once, and all in the same
direction—the total result is the same as if the whole original
cycle were traversed once. For the total work done is, in one
case, the sum of the areas of the simple cycles, and in the other,
it is the area of the whole cycle, and these two areas are identical.
Furthermore,—since all the isothermal changes are common to
the whole cycle and to the sum of the simple cycles, the total
amount of heat received by the system at any temperature is the
same, whether it traverse the original cycle as a whole, or traverse
the simple cycles separately.

Now since each of the simple cycles is reversible, if the whole
cycle was so, we may apply to each one the equation

Q.9
+00

By addition of all the expressions of this form, we have for the
whole cycle, equivalent to a performance of the simple cycles
successively, the equation

380 (92)

Such a cycle as the one here treated is called a compound Carnot
cycle.

If the original cycle were m'evers1ble, some or all of the simple
cycles would also be irreversible : for these we should have

drgzo

so that the addition would give, for the whole irreversible cycle,
the inequality
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113. Suppose, now, that a system undergoes any sort of cyclic
modification whatever, the sources of heat being as many as we
please. If their number is finite the cycle may consist of a finite
number of isothermal and adiabatic changes. If the system takes
in and gives out heat while its own temperature varies continu-

X

Fia. 20.

ously, the indicator points may describe any curves whatever on
the various diagrams. If such a cycle is to be reversible, we must
have an infinite number of reservoirs of heat, so that we may
have one for each temperature that the system has during the
cycle. Let dQ be the quantity of heat received by the system
while it is at the temperature 6, and let us consider the value

of the expression
aQ
("

Let the cycle be broken up, as before, and as shown in Fig. 20,
into a number of simple Carnot cycles—each reversible—plus
a number of cycles around the contour, each of which consists of
an isothermal change, an adiabatic change, and a change that is
a part of the original cycle, which we will, for the present,
suppose to be reversible in all its parts. For the compound
Carnot cycle, composed of the simple ones performed separately,
we have the equation

=5-0
0 b

as shown in the last article. Now let the number of the simple
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cycles increase indefinitely, in such a manner that the lengths
of the isothermal curves all approach zero. We still have for

the compound Carnot cycle the equation E ] =0, which here
reduces to
aQ
(p%-o.

As the number of the elementary cycles round the edge of the
diagram increases indefinitely, the value of 6 approaches a
constant for each one of them, so that we have, for any one

of them,
(- ~5(ae

But (.‘.) d@ has the same numerical value as the heat that the

system converts into work in traversing this cycle; it is there-
fore equal to the area of the cycle. This area is an infinitesimal
of the second order; for if n is the number of the cycles and
n increases indefinitely, the linear dimensions of each of these

cycles on the diagram or dlagra.ms are of the order -5, and the

- area i8 of the order o% Since 6 is finite, it follows that the

value of the expression
1

is an infinitesimal of the second order, when the integration is
round one of the elementary cycles. The sum of all these
expressions for all the n cycles round the contour of the original
cycles, is, therefore, an infinitesimal of the first order and may
be neglected.

Now the expression

%

has the same value, whether it be taken round the curve forming
the contour of the original cycle, or whether it be taken once
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round every one of the infinite number of cycles into which we
have broken up the original cycle, provided that all the cycles be
traversed in the same direction of rotation. For every part of the
contour will appear once and only once in the integration round
the separate cycles, while every other portion of the boundaries
of the small cycles will be traversed once in the positive and once
in the negative direction, so that the term that it contributes to
the whole integral will be zero. We have already shown, that
the value of the integral is zero round the compound Carnot
cycle, and infinitesimal when taken round the infinitesimal cycles
bordering on the original contour. Hence if taken round the
original contour directly, it is infinitesimal, and we have the
result : If a system perform any sort of reversible cycle, varying its
temperature in any manner and taking in or giving out heat at any
number of temperatures, the equation

(j)‘%Q=0 ......................... "...(94)

is always fulfilled.

114, Suppose, now, that the original cycle is irreversible in
some or all of its parts. It is, by definition, impossible to have
a reversible change of which the states are infinitely near to
those of an irreversible one. Hence the compound, isothermal-
adiabatic cycle will, where it comes infinitely near to the actual
cycle, be itself irreversible. For some or all of its elements we
shall .therefore have

Ql Qﬁ = -
0,*8,="
and for it as a whole .
9=,
or
d
(pF=o

The same reasoning as in article 113 may be applied to the
infinitesimal cycles bordering on the contour 6f the actual cycle,
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states in common. The two paths taken together, one in the
direction 4 B and the other in the direction B4, form a reversible
cycle, for which we have
. iQ

(j)'g‘*" .

F1e. 21.
Bt P5-[.(D)+1.(3),
L&) 1.3), o
hence jj <‘%Q)I = : (‘109)” 3 eeerereenerettrre e araes (96)

or the value of the integral r%g is the same for any two, and
4

therefore for all reversible transformations by which the system

may pass from one of the states 4 and B to the other. This

value may therefore be written

2g
j 79@ g = Hty everereeeaneremsrasaren )
4

where 7 is a function of the variables that determine the states
A and B. To this function, Clausius gave the name of the
ENTROPY of the system. Like the internal energy ¢, it contains
an arbitrary constant ; for the addition of such a constant leaves
the equation (97) unchanged. The entropy, like the energy, is,
therefore, determinable only as regards its changes and not in
absolute value.
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If applied to an infinitesimal reversible change of state, equa-
tion (97) reduces to

or Q=081 e (99)

116. It is more difficult to form a distinct, physical idea of
entropy than to form one of energy. The increase of internal
energy, as a system passes from a state 4 to a state B by any
sort of process, is the sum of all the energy put into the system,
in whatever forms it is supplied—whether as heat or as energy of
the mechanical value. If some state be chosen as a normal one,
for which we arbitrarily set ¢=0, the internal energy of the
system in any other state is the total energy it receives, while
passing from the normal state to the state in question.

The value of the entropy, also, may be arbitrarily set equal to
zero when the system is in the same normal state. In any second
state, that can be reached from the normal state by a reversible
process, the entropy of the system is the value of the integral

J.%Q-, taken along the reversible path, from the normal to the final

state. If it is possible to connect the normal and final states by
a gingle isothermal process at the normal temperature, followed
by an adiabatic process leading to the final state, both processes
being reversible, the entropy in the final state is simply

Q
=30
K 0,

where @, is the heat that enters the system during the isothermal
process ; for during the adiabatic change no heat enters or leaves
the system and its entropy remains constant.

We shall assume, in the absence of proof to the contrary, that any
two possible stales of any system may always be connected by an infinite
number of reversible paths. In other words; we shall assume, that
whatever be the two states considered, we may arrange between
them, theoretically, at least,—an infinite number of continuous
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series of states, such that it is possible to apply to the system
outside actions which would keep it in equilibrium in any one of
these intermediate states. With this assumption, we may say,
that after the normal state has been selected, the value of the
entropy is fixed and definite for every other possible state of the
system, whether that state has actually been reached from the
normal state by a reversible process or not.

117. As examples of processes that may lead a system from one
state to another, either by a reversible or by an irreversible path,
we may cite the following :

The expansion of a gas from one volume to another may be a
free expansion, in which case it is obviously irreversible. But the
expansion may also take place against a frictionless piston; and it
is possible, by proper regulation of the pressure on the piston,
and by the supply or withdrawal of heat, to stop the expansion at
any volume and temperature* that the gas had during its free

,expansion. Hence the expansion may be performed reversibly.

The diffusion of liquids and gases is an irreversible process.
But by the use of semipermeable pistons, which allow some
substances to pass through them but are impermeable to other
substances, we may stop the process—that is, bring about a con-
dition of equilibrium—at any stage that we choose. This diffusion
may, therefore, be made reversible.

If a pair of electrified conductors, charged to different potentials,
be connected by a wire, the charges redistribute themselves, so
that the potential is uniform all over the conductors and the wire.
During this process of redistribution, heat is developed in the
wire, and the process is irreversible. But by means of a small,
movable, conducting sphere, the potentials of the two conductors
may be equalised by convection, i.c., by motions of the electric
charges with the moving sphere,—motions which may at any time
be stopped by the application of appropriate mechanical forces.
By the convection method, the potentials may, then, be equalised
in an approximately reversible manner. We say ‘approximately,’

* Assuming that temperature to have been uniform.
H
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only, because there still remains the irreversible conduction of
electricity in the substance of the conductors and the sphere.

A weight falling under the influence of gravity, may be brought
to rest at a lower posgition, either suddenly by collision, or gradu-
ally by friction. In either case, the fall is irreversible. But if
the weight, while descending, raise, by a perfectly flexible and in-
extensible cord running over a frictionless pulley, another weight,
less by an infinitesimal amount than itself; the fall of the first
weight is reversible. For by an infinitesimal addition to the
counterweight we may stop or reverse the motion.

It is worthy of notice, that in each of these examples, the system,
in passing from a given initial to a given final state, gives out a
greater quantity of energy of the mechanical value in the rever-
sible than in the irreversible process. The bearing of this remark
will be evident when we come, in Chapter XII, to the considera-
tion of free energy.

Change of Entropy during Irreversible Processes
118. It has been shown that for any irreversible cycle

dQ_ .
( )70< e eeter e eeneaennes (100)
a cycle being irreversible if any portion of the operations com-
B
3
A
Fie. 22,

¢ posing it is irreversible. Let a system pass by an irreversible
path ¢ (Fig. 22), from the state 4 to the state B: let it return
from B to 4 by the reversible path . The combination of these

<, 4 N f . ~ . .
Ju 0“‘4"“‘ Pam mavat A e WILL e e Aewd e ctade J\m,; rMM»-' .
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two paths forms an irreversible cycle, to which formula (100)
is applicable. It gives us, when thus applied,

(-1
NORIOE

But we have the equation
s rd
.‘.4 (70), =N~ Na ‘

B d _
j (—0— I (101)

A

Hence it follows that

or the value of the integral j taken along an irreversible path

between two states, is equal to or less than, but not greater than
the increase of the entropy. If the states 4 and B are infinitely
near together, equation (101) gives us

5Q\ _
(7‘7)‘2 e saenens (102)

or, for the heat_absorbed by the system during any infinitesimal,
irreversible transformation, >
=11 RPN (103)

PN U A

L

Entropy of an Ideal Gas

119. In order to make the notion of entropy more concrete, it
is worth while to show how its value may be found in the simple
case of an ideal gas.

Let the mass of the gas be unity, its temperature 6, and its
volume 2. Let the normal temperature and volume be 6, and v,
respectlvely Let the gas expand or contract admba.tma.lly, till
its temperature is 6,; let it then expand or contract isother-
mally, till it has the volume v,, Both of these operations are to

.utlmwmc.irﬁw{—ml‘ntt% Zovr,
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be reversible. Since there is no change of entropy during the

reversible, adiabatic change, the entropy is equal simply to %9
0

Now as the internal energy of an ideal gas is independent of
the volume, the heat @, which the gas would absorb in changing
its volume reversibly and isothermally at the temperature 6,
from v, to ¢/, is equal to the work it would do against the outside
pressure ; or

| Qo=rpdv=zzoolog%.

But we have Gy =0 v,
or V= (—q )’Tl:lv
6,/
f\7-1v
Therefore Q,= Rl log [<0_o> "_o]

1 0 v
6 v
=C,0,log g+ Rb,log —,
A () %
whence we have finally, as the value of the entropy, sl fmpurelunt § aune st v

n=%=0,log%+Rlogv%. ................. (104)



CHAPTER IX.
GENERAL EQUATIONS.

Equations resulting from the Combination of the
Two Laws of Thermodynamics
120. The first law of thermodynamics may, as we have seen,
be expressed by the equation
8e=3Q + O,
or 8e=8Q+ >, X8&; ....ceuu TN (105)

where the sum >, X3 contains only terms referring to the
external variables, those due to the possible existence of internal
variables being all separately zero.*

The second law may, so far as it refers to reversible modifica-
tions of state, be expressed by the equation

8Q= 08 v (106)

By combining equations (105) and (106), we get, as a result
which must be valid for all infinitesimal, reversible changes of
state, the equation .

Se= 08+ 3 X80 oo (107)

If the changes of state are all reversible, the system is always
infinitely near to being in a state of equilibrium, and the

*If the variables used are not mormal, the coefficient 7 is among the
quantities X : we are assuming, however, that the variables are normal.
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generalized forces X', X", X, ete, satisfy the equations of
equilibrium (art. 46). The quantities X are therefore to be
treated as functions of the variables 7, 2z, ... z*, 6, which
determine the state of the system, and we may give equation
(107) the following four forms :

8e=08n+ D) Xaz,

3(e—On)= — 930+ >, Xaz,
3(e—Op- > X1)= — 930 - >, 23X,
8((—2XI)=081'—228X;

the last three being obtained from the first by subtracting

8(6y), 8(6n+ >, Xz), and & >, Xz, respectively.
If we now let

ceveeeen(108)

L 4

Y=c—bn, 1
{=e—0n—> Xz, oo (109)
x=¢->, Xz, J

we get, by comparison of equations (108) and (109), the
equations

8= Oy+ D, Xés,
Sy = _1780+2X8c’ .................... (110)
8{= _,,'80_2381)

Sx= 65— > 28X

It is to be noted, that since ¢ and 7 contain arbitrary
constants 4 and B, the function x contains the constant A,
while ¢ and { contain the linear function of the temperature,
A+ B6. .

121. The first member of each of the equations (110) is the
complete differential of a function of the variables ', 2", ... z*, 6 ;

*ML,{E‘J .?A(‘. 'fmour} .
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the same must, therefore, be true of the second member; so
that we have at once the following equations :

@),
CARERIC N
(3X‘ ox (37 x)x
. ( K

20y - ?w_)
3X%)0  \n )y

The meaning of the double subscript (7, ) is, that # and all
the variables #',, 2", ... etc.,, and 2', 2”,, ... etc., except zF, are
to be kept constant during the differentiation.

The following equations are also ev1dent upon inspection of
the equations (110)

b e ereenn(112)

Forms of the Preceding Relations for Systems
subject only to & Uniform Pressure

122, When applied to the important case of a system subject
to no other outside action than a uniform pressure on its surface,
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and having its state defined by the variables v and 6, the
equations (109) to (112) assume the following forms :
Equations (109) reduce to , i S X« - —pev

y=cmbr,
437 7t A {=e—Op+pu, L oo (113)

Equations (110) reduce to
| &=08"—P8'r
8= —180-pdv,
B . (114)
3x =08, + vdp,

Equations (111) reduce to
E--@):)
&)~
&)~ -G
&\ -G |
Equations (112) reduce to
-),-@);
-GG

S (115)
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If the system requires, for the complete determination of its
state, a number of internal variables, «, 2", ... 2%, in addition to
the normal variables, v and 6, hitherto regarded as sufficient—the
system now having + 2 degrees of freedom—the equations (113)
to (116) remain entirely unchanged, except that, in all the partial
differentiations, the internal variables must be kept constant, as
well as the quantities already indicated by the subscripts.

Characteristic Functions foi' Isothermal Processes

123. All the relations among the properties of thermodynamic
systems in equilibrium, that can be deduced from the two laws of
thermodynamics, are expressible in terms of the 2n + 3 quantities

2o Lt XX XN 0,6y (117)
the system having n+ 1 degrees of freedom.

If we choose, as independent, the normal variables

z, 2" ... 2" 6,

a knowledge of the form of a single function, y, of these variables,
enables us to express all the other quantities, and therefore all
functions of them, in terms of #, z”, ... ", 6. For we have the

equations
oy
K = —
Xr= (%K) 6, :’

so that all the quantities of the set (117) may be expressed in
terms of y and the normal variables.
If we take as independent the inverse variables *

oty . 8 X'y X'y .. X*™, 0, ............ (119)
* See art. 54.
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we have the equations

o )
(B
o ‘a 0, X, z;

T @(_9>x.. =’ .......(120)

e
¢

=(-6 3_§>x,,z¢—zx‘<ﬁ O-X-"‘;

so that in this case the function ¢ plays the same 7dle as ¢ in the
former case.

124. In the particular case discussed in article 122, the fore-
going statements may be put in the following terms :

When the volume and the temperature are used as independent
variables, the equations

p=- (o

n= - a_g)v,“, ............... (121)

c=y+On=y-06 al).,,,"

enable us to express all the relations deducible from the two laws
of thermodynamics in terms of v, 6, ¢, and the internal variables,
if there are any; or, when ¢ is known as a function of the normal
variables o', 2", . . etc., v, 6, all the relations may be expressed
in terms of these variables.

When the pressure is substituted for the volume, as one of the
independent variables, the equations

of
v=(3)s..
v |
7= '(a_o),,,," ...... (122)

¢=(+01]+P1’=(“0 %g>p.1s -p %)0,:.’
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enable us to express all deducible relations in terms of the inverse
variables, if { is known as a function of those variables.

This property of the functions ¢ and ¢ was first pointed out by
Massieu,* who employed the functions

H= -y, (v and 6 independent)
and H=-{ (p and 6 independent)

to which he gave the name of CHARACTERISTIC FUNCTIONS, in
the study of the thermal and mechanical properties of vapours.

Characteristic Functions for Isentropic Processes

125. The functions y and ¢, which act as characteristic functions
when the temperature is one of the independent variables, are
useful in the study of processes in which the temperature is
constant ; and these isothermal changes are very important. In
reversible adiabatic processes, the entropy » is constant ; hence
it is convenient, in the reasoning, to take 5 as one of the
independent variables, in place of the temperature.

If the independent variables are /, ", ... 2", 7, we have, by

equations (112),
Oe
E_(_—_
x=(5%),.

_ (36)

=(&);

By these equations and equations (109), it is possible to express
all the quantities of the set (117) in terms of the independent
variables here used, if ¢ is known as a function of those

variables. The internal energy e acts, therefore, as a character-
istic function.

0

* Massieu, Mémoires de I’ Académie des Sciences, 33, No. 2; also, Journal
de Physigue, (1), 8, p. 216 (1877).
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If -he ndependent variabies are
Sy P X X, X,

we have. hy ennaticns 112,

_ X
#= X%, l ____________________ (124)
F= :1‘ : '
R SN

whence. by the aid of erjuagicas (138 it is possible to express,
in terms of the independent varisbies here used. ail the quantities
of the ser {117\ if y is known as a fancton of the independent
variables, r, ... r*, X', ... X>™_ . Hence in this case, y acts
a3 a characteristic funetion.

Fandamental Equations
128. An inspection of the sets of dependent and independent

variables appearing in equations (113) shows that a single
erjuation. of the form

DS (U S5 SR - TR, (125)

makes it possible to express all the thermodynamie properties
of the system, in terms of the independent variables there
used. For equations (120) an equation, of the form

(=l o Xy e 2 Xy X7 e X 8)y e (126)

- serves the same purpose. For equations (123) the necessary
erquation 18
€= 12, I o e (1327)

and for equations (124) it is
X=STa &g ooe 75 X'g X oo X" ke (128)
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Now the sets of equations (118), (120), (123), and (124) are all
equivalent, in substance, since they were all derived from the
same original equation, namely,

8e=08n+ >, Xou.

Therefore, any one of the equations (125), (126), (127), (128),
between
Y, 2,2, ...2% 6;

S I ’ " -
or 6 gy ™ Xy X, X0
or e 2,4, ...a% ;-

! 4 ! nd/ -
or Xo T @y oe % X'y X"y oo XV ™,y ;

is equivalent to any other, and enables us to express all the
properties of the system in terms of the n+ 1 quantities, selected,
in the various cases, for use as independent variables. Any
such equation is called a FUNDAMENTAL EQUATION. Other
characteristic functions and fundamental equations might be
found, but those we have mentioned are the ones of most
practical importance, on account of the manner in which it is
most convenient to perform thermal experiments.

For further discussion of the subject of characteristic functions,
the reader may turn to the text-books of Bertrand * and Pellat,t
and the memoirs of Massieu } and Gibbs §.

Nature of the Foregoing Results

127. All the equations of this chapter are mere mathematical
deductions from the one original equation

8e=08n+ >, X,

* Bertrand, Thermodynamique, chap. VI. Paris, 1887.

+ Pellat, Thermodynamique, note F, p. 276. Paris, 1897.

4+ Massieu, 1. c.

§ Gibbs, Trans. Connecticut Acad., 8 (1875-1878) : translated into German
by W. Ostwald, and published under the title, ‘ Thermodynamische
Studien von J. Willard Gibbs.” Leipzig, Engelmann, 1892,
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which is the combined expression of the two laws of thermo-
dynamics, as given in equations (105) and (106). They add
nothing, in a certain sense, to our knowledge; but they give us
a set of general relations between the quantities

Ty @y eee B By @y e B Xg Xy e X 0, 6,40, 6 X2

relations which are often of great use, and which it is well to
have collected for reference.

It should be particularly noted, that the original equation,
from which all the others were obtained, is valid during any
reversible modification of the state of a system. If, therefore,
all the differentials and differential coefficients, occurring in
the equations, refer to displacements from a state of equilibrium,
the equations of articles 120 to 126 are surely valid.

We have not, however, shown for irreversible processes, either
that

de= 08+ >, Xz,
or that

de< 08+ D, Xz,
but merely that one or the other is true. Hence we cannot, for
the present, say whether the equations of articles 120 to 126
are, or are not, valid, when referring to displacements from a
state that is not one of equilibrium.



CHAPTER X
APPLICATIONS

Theory of the Plug Experiment

128. It is well, before going farther with the development of
the theory, to illustrate by a few concrete examples, the use of
some of the equations obtained in the last two chapters.

In those chapters we have been using the thermodynamic
temperature, although we have no direct method of measuring
it. As yet, all we know about it is, that it is proportional to
the temperature as read from a thermometer filled with an
ideal gas. We know also, that oxygen, hydrogen, and nitrogen
follow Boyle’s Law very closely if the pressure is not too great,
and that the heat which they absorb or develop, during free
expansion, is nearly zero. These gases, therefore, approximate
closely to the ideal state, so that the absolute temperature, as
read on a thermometer containing one of them, is, at any rate,
very nearly proportional to the thermodynamic temperature. It
is important that we should find, if possible, how close this agree-
ment is, and what corrections must be applied to the readings of
the gas thermometer to reduce them to the thermodynamic
scale.

To answer these questions, we must first know how the gas
deviates from Boyle’s Law: we shall suppose, then, that the gas
under consideration is one that has been investigated completely,
in this regard. We must, in addition, know what are the
thermal effects due to free expansion, in order that we may be
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able to express the internal energy of the gas as a function of its
volume.

The experiments of Gay-Lussac and of Joule (art. 73) showed
that the change of temperature in free expansion was, at any rate,
very small ; but their methods suffered from one obvious defect.
The thermal effect, produced by a small mass of gas, was so dis-
tributed over vastly larger masses of solid or liquid bodies, as
greatly to reduce the changes of temperature to be measured,—to
the detriment of the accuracy of the results. To obviate this
difficulty, it is necessary to make the free expansion as nearly as
possible adiabatic; that is, to confine the heating or cooling to the
gas itself. It was with this aim that the celebrated PLUG EXPERI-
MENT was undertaken by Joule and Thomson (Lord Kelvin),
in the year 1852. We shall now give a brief discussion of the
theory of this experiment : for the details of the experimental
work we must refer the reader to the original memoirs.*

129. The gas to be studied was forced uniformly through a
porous plug, the resistance of the plug to the passage of the gas
being sufficient to reduce the pressure of the gas to that of the
atmosphere, so that as the gas issued from the plug its kinetic
energy was sensibly the same as before entering it. The plug
consisted of a mass of silk or other fibres, compressed between two
perforated brass discs: the discs and the fibres were in a boxwood
tube, and this tube was carefully insulated from the influence of
outside heat, so that, as the gas.passed through the plug, any
changes in its temperature might be due solely to the effect of its
expansion. Before entering the boxwood tube, the gas passed
through a long spiral pipe or worm, immersed in a vat of water.
By this means, the gas was brought to a constant, known temper-
ature before entering the plug. The measurements to be made
consisted in observations of the rate of flow of the gas, together
with its pressure and temperature, both before and after it had
passed through the plug. Before making these observations, the

* Thomson, Math. and Phys. Papers, 1, pp. 333.to 455 ; Joule, Scientific
Papers, 2, pp. 215 to 362.
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gas was kept flowing uniformly for a long time, until no further
fluctuations of the temperature were perceived, and it could be
assumed that a steady state had been established.

The experiments showed that hydrogen became slightly
warmer in passing through the plug, while the other gases used
became slightly colder. This change of temperature was found
to be approximately proportional to the difference of pressure on
the two sides of the plug. ,

Since the operation to which the gas is subjected is adiabatic,
the increase of the internal energy is equal to the work done by
the outside forces. Let p and p’ be the values of the pressure
before and after the passage through the plug: let #, € and ¢/, ¢ be
the correspending values of the volume and internal energy of
unit mass.

—_—

pv v
A
Fia. 24.

Since the gas enters the plug at the uniform pressure p, the work
done on it by the driving pressure is pv. The gas issues with the
uniform pressure p, it therefore does a quantity of work p'”,
against the outside pressure ; both these quantities refer to unit
mass. The total work done on the unit mass, during its passage
through the plug, is (pv - p'v'), so that we have, for the increase
of the internal energy, the equation

€—e=pr—pV.ceiiiiiiiiiiiiian. (129)

130. Let us now confine our attention to the case where the
difference of pressure on the two sides of the plug is infinitesimal.
Let T, p, v be the temperature, pressure, and specific volume of the
gas as it enters the plug : let (7'+ AT), (p + Ap), and (v + Av) be the
values of the same quantities, as the gas issues from the plug.
The difference of pressure, Ap, is always negative ; the difference
of specific volume, Av, is always positive ; the difference of temper-
ature, AT, is negative except in the case of hydrogen. Suppose

I

e
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increases by the amount of heat taken in, namely, — CAT. If
we let (e; — ¢,) =8¢, we have
A Se=Ae - CAT,
or by equation (130)
Se= —pAv—vAp—-CAT. ................ (131)

Now e is a function of v and T only : therefore 8¢, which is the
change in the internal energy of the gas as it passes from the
state 4 to the state B, by the irreversible path 4CB, is the same
ag the change would have been during the direct and reversible
isothermal expansion from 4 to B. Let us now apply to this
latter process the equation

8e=08Q + W
" We already know the value of 8 by equation (131). We also

know that
W= —pAv;

hence the value of the heat that the system would absorb in the
reversible expansion 4 B is given by the equation
‘ 8Q =8¢ — W
= —0Ap-CAT. coeeevvniiniinnnnns .(132)
Since we are now dealing with a reversible change of state, we
may also apply the equation
' 8Q =08,

which gives us, for.the increase of the entropy, during the re-
versible, isothermal expansion 4 B, the value

8= - (08 + CAT). e n(133)

The results of the experiments showed, that for finite differ-
ences of temperature and pressure, these differences stood in a
constant ratio to each other. Let us make the assumption, that

Sk of bl
tonprolent 6
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this ratio still remains constant, when the difference of pressure
is infinitesimal : we may then write

%}I;; B=CONSt. . .ivenieiiiiiiiiiiiin (134)

AT = plp.
Substituting in equation (133) gives

B= = 5O+ BCYP. oo (135)

We must now replace Ap by 8p, the variation of the pressure
that corresponds to the variation 8y of the entropy. The relation
of Ap to 8p is given by the fact, that

B (h 5, . Ap-dp= (8}1)1) AT = (g]} .Ap;

whence
Ap= = ( > ) ......................... (136)
~H\3T

This value of Ap, substituted in equation (135), gives the varia-
tion of the entropy in terms of the simultaneous variation of the
pressure, and we have the equation

v+pC

@)

But, as the procéss to which 8y and 8p refer is reversible, we may
apply to it the general equation

8e= 08 - pdv. ’
If this be put in the form
8= —7n80+v8p,

) @_P)o:%),; (1 4 g (45))

it gives

.............. (137).
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whence equation (137) gives us

1  v4pC, (o0
. _@——(a—(a),,’ ................................ (138)
1- k),
or .
0] v+ uC,
o(_) L U (139)
90/, op\’
L-a(3h),
a perfectly general equation for the thermodynamic temperature
on the assumption that the ratio i—T is independent of the value of Ap

even when Ap s infinitesimal.
131, If the gas is one for which the thermal effect in passing
the plug is zero, we have u =0, and equation (139) reduces to

‘ 0<%>p='v;

whence, by transforming and integrating,

log 6=log Kv (p constant),
or 6=Kv (p constant). ................ (140)

The thermodynamic temperature is proportional to the tem-
perature as read on a constant pressure thermometer of this gas,
regardless of whether the gas obeys Boyle’s Law or not.

In the general case, when p does not equal zero, equation (139)
may be put in the form

2

i - "(a_I:;

g _ 0 (141)
6 " v+pl,

If this equation be integrated between any two temperatures
denoted by 6, and 6 on the thermodynamic scale, and by 7, and
T on the constant pressure gas scale, it gives
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where v, and v are the volumes of unit mass of the gas, at the
temperatures T, and 7, under the constant pressure =.

The int.egmtion can not, of course, be performed, unless p, C,
and aT are known, as functions of r; but by certain simpli-
fymg assumptions an approximate result may be obtained. Since
# is very small at most, let us treat it as constant, and give it
the average value that it takes between the two temperatures in
question, as found by the plug experiment. The specific heat at
constant volume, since its variations are known to be small, and
since it occurs only in the small correction term pC, may also

be treated as a constant. Moreover, as (bp ) also, occurs only
when multiplied by the small quantity u, we may write

). -

as if the gas obeyed Boyle’s Law exactly. Under these conditions.
equation (142) reduces to

loga I'HFC ..................... (143)

Instead of the volnme, we may now introduce, as the inde-
pendent variable, the temperature 7' of the constant pressure
gas thermometer, by using the equations .

which define this temperature. "Equation (143) then assumes
the form
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whence we have
C,+R

:‘; (:Zg:%) e (T) N (144)

If p=0, equation (144) reduces to
s_r
6 T,

as was shown before, equation (140).

132. Instead of treating p as independent of the temperature,
we may probably get a closer approximation to the truth by
setting

b= T2 5
for the thermal eﬂ'ect seemed to be nearly proportional to the
inverse square of the absolute temperature If we treat (a ) and

C, as before, but let u=a/T? we have
_R2a
=y
Substituting this value in equation (143), and rearranging,

lo w28 — R3a _T =B o
80 +, 2(BaC, + 7%P)

By separating the terms and substituting =15, this equation

may be integrated : it gives .

aT' j9==p
log % = [1og (FraC, + w2yt +10g (ﬁ“o;;'—ﬁ) |

0
0+R

R
9 (o\ G *|/RaC,+rH .
0_0=<%> J ng s B — (145)

Substituting from the equatlon mv=RT, which defines T, we get
C,+R

c, +RT3 G
) J(ﬂ: ot Ms e (146)

le‘"ms Mhh»nwlij } ‘RT

whence
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As before, if p=0, i.e. =0, this equation reduces to the form
0 T

6, Ty

133. If the necessary data are given, concerning R, C,, and g,
it is thus possible to compute the ratio, on the thermodynamic
scale, of any two temperatures, such as the freezing and boiling
points of water, if these temperatures have already been expressed
in terms of the scale of the constant pressure gas thermometer.
We may then assign to these temperatures, such numerical values,
that the difference between them is the same as on the Celsius
scale,—one hundred degrees, in the case just mentioned. The
thermodynamic temperature of the melting point of ice, obtained
in this way, is very nearly the same as it is on the absolute gas
scale of a thermometer filled with oxygen, hydrogen, or nitrogen.
We may then go on to compare 6 and T at various other tempera-
tures, and in this way, make out a table of corrections, by which
the readings of the constant pressure gas thermometer may be
reduced to the thermodynamic scale. If the corrections of the
constant pressure thermometer have once been found for a par-
ticular gas, the corrections for the constant volume thermometer
filled with the same gas may evidently be found, from the known
deviations of the gas from Boyle’s Law. The results show, that
between the freezing and boiling points of water, the corrections
of the normal, constant volume, hydrogen thermometer are hardly
greater than the unavoidable errors of the determination of such
a temperature, unless very great care be used in the determin-
ation. .

These corrections have been computed, by various formulas,
from the results of Joule and Lord Kelvin, regarding the value of
M in connection with the data of other observers on the other
quantities involved. As our purpose has been only to show that
the computation is possible—at least to a considerable degree of
approximation—we shall, for the details of such computations,
merely refer the reader to the original memoirs of Joule and Lord
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Kelvin,* and to a recent paper by Mr. R. A. Lehfeldt “On a
Numerical Evaluation of the Absolute Scale of Temperature.” t

It is to be noticed, that some writers, in elementary discussions
of the plug experiment, have applied the equation

8e=00n + W

directly, to the adiabatic change of state of the gas in passing
through the plug. Such a treatment is, however, quite inadmis-
sible, because the passage is essentially irreversible, so that it can
not be assumed, that
8Q =65y,
Having now put the idea of thermodynamic temperature on a
secure basis, we proceed to consider a few other simpler applica-

tions, which illustrate the use of the principles and equations

deduced in Chapters VIII and IX.

The Relation of the Elasticity of a Solid to the
Temperature

134. Let By (fig. 26) be a rectangular volume-element of a
solid body : let the element be subject to a tension parallel to the

Q----------1-
:

Fig. 26.

edge a, and let the temperature of the element be 6. Suppose
the tension f to be increased to (f+ &f), thereby increasing the
length of the side a to (a+ 8a): at the same time, such a quantity
of heat is to be supplied or abstracted, as to prevent the tempera-
ture of the element from changing. Let the increase of the

* Kelvin, Math and Phys. Papers, 1, p. 333.
+ Lehfeldt, Phil. Mag. (5) 48, p. 363 (1898).
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tension be so slow that the element is, at all times, approximately
in equilibrium, so that we may treat the increase of the length
of the element as a reversible process. Let A ¢ be the quantity
of heat absorbed by one cubic centimeter of the solid, when it is
stretched, isothermally, by an amount ¢ cms. per centimeter of
its length.

During the increase of e, the work done by the tension, on the

element afy, is
SW = f8a.

The heat absorbed during the same process is pa owbiccumbimeln 474 j{“‘

and Q= )L— affy=A.By.8

The equation
Se=08n+fda = 64y +d-

may now be applied, and we will put it in the form

. Y= —n80+fda, - -1 477,
which shows that (111)

-G~ G

Now the increase of the entropy, due to the increase of a, is
given by the equation

gz)o= %(gg)o=égl

We therefore get, by comparing the last two equations,

(gg - _’%". e, (147)

If F be the tension per square centimeter, or the stress, equation
(147) reduces to the form

(ao e e (148)

which is a relation connecting A, 6, and (%%) , the rate of in-
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crease with the temperature, of the stress, needed to produce a
given state of tensile strain.
- The immediate conclusion is, that for solids which expand on

being heated, and for which, therefore, (%1;) <0, the latent

heat of stretching, A, must be positive. During a slow isothermal
extension, heat is absorbed : if the stretching is so sudden as to
be approximately adiabatic, the solid is cooled by the strain. A
stretched piece of vulcanized india-rubber contracts longitudinally,
upon being heated ; a sudden increase of its length should there-
fore be accompanied by an increase of its temperature. These
conclusions have been- found to be in accordance with the facts,
as investigated by Joule.*

Electromotive Force of a Reversible Galvanic Cell

136. If a quantity of electricity, ¢, be allowed to pass through
a galvanic cell, the internal composition of the cell changes, by
reason of the electrolytic reactions which accompany the flow of the
current. By connecting the cell with another, of greater electro-
motive force, acting in the opposite direction, we may force the
same quantity of electricity to flow back through the cell. Let
the strength of the current be infinitesimal, in both cases. If the
reversal of the current reverses all the physical and chemical
reactions inside the cell—so that when the quantity of electricity
e has passed back, the cell has returned precisely to its initial
state—the cell is said to be a reversible cell. The Daniell cell
satisfies this condition very nearly, if we disregard the slow
diffusion of the liquids, which takes place, even when the cell is.
inactive.

Let us consider a cell of this sort: let its electromotive force
be E, when its poles are disconnected, and when its temperature

'Joule,_ Phil. Trans., 149, part I, p. 91 (1859) ; also, Scientific Papers,
1, p. 143.
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is 6. The state of the cell at a given instant of time, may be
changed, either by changing the temperature, or by allowing a
current to pass through it, in one direction or the other. At any
future instant, the state of the cell is determined by its tempera-
ture and by the quantity of electricity, ¢ that has passed through
it since the time {=0. For the chemical changes inside the cell can
go on only in proportion to the quantity of electricity that
traverses the liquids, and the direction of these changes is
determined by the direction of the current. Let ¢ be counted
positive, when it is a quantity passing through the cell in the
natural direction : this will be, through the solution from the zinc
to the copper, in the case of the Daniell cell.

The cell may now be treated as a system capable of reversible
modifications of state, defined by the variations of the variables e
and 6. If the reactions accompanying the passage of a current
do not involve the appearance or disappearance of any gaseous
components, the changes in the volume of the cell are so slight as
to be of no importance, and ¢ and 6 may be regarded as normal
variables.

Let the following cyclic process be performed :

I. Let a quantity of electricity e pass through the cell in the
positive direction, while heat is added or taken away, at such a
rate as to keep the temperature constant at the value 6+ 86. Let
the passage of the electricity be carried on reversibly : this may
be done, by having the motion of the electricity outside the cell
consist in actual convection, taking place so slowly that the
quantity of heat, 12Rf, developed inside the cell, is negligible on
account of the smallness of the current.

II. Let the supply or abstraction of heat be stopped until the
temperature of the cell has fallen by an amount 86, an infinitesi-
mal quantity which may be either positive or negative. This will
cause an adiabatic change of state, and the electromotive force

will change from its original value which was E + (%_0' 30, at the
temperature 6+ 86, to the value E.
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III. Let the quantity of electricity ¢ be now passed back
through the cell, by means of the convection apparatus, the
temperature being kept constant at 6: this process is to be
reversible like the first.

IV. Let a final, infinitesimal, adiabatic process bring the cell
back to its initial temperature.

The work done by the cell on the convection apparatus, during
the first operation, is

OF\ |
W, = [E +(35) ]
The work done on the cell during the third operation is

Wq=Ee.

As the adiabatic processes are infinitesimal in length, the work
“they involve is negligible : hence the total amount of work done

by the cell during the cycle, i.c. the amount of heat it converts
into work, is

W, - W—e( 86-50.

00

Now, the reactions that actually go on in the cell during the
passage of the current, might be made to go on, in a different
apparatus, without the flow of any current. Let A be the heat
that would be developed, under these conditions, by a reaction
involving the same amounts of the various substances as are
actually involved during the passage of one unit of electricity
through the cell, in the positive direction. Then, during the
‘operation at the temperature 6+ 86, the energy Ae has been
developed by the reactions in the cell. But at the same time, the

energy [E + (g-g) 80]e has been given out in the form of electri-

cal work, so that, on the whole, in keeping the temperature of
the cell constant, we must have supplied to it the heat

o[+ )]
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If we substitute these quantities in the equation
8Q 80 glul.ltl llllt-!) p.L
‘U=7’ "Q @~ l(mr li‘l(‘l(

"% 86 56
T =g+o0
[E + (é%').ao]e -1

or, dropping the negligible infinitesimals and simplifying,

Ga). s

4
(2}) _%& ............................. (149)

E=\+ 0%); ...................... (150)

We have thus obtained a relation connecting the heat of re-
action, the electromotive force, and the. temperature coefficient of
the electromotive force. This relation, which is due to He}mholtz,
has been verified by the results of numerous experiments.

136. We have here, for the sake of illustration, treated the
problem by means of a reversible cycle. While this method of
treatment is straightforward, and uses only the simple equation

we get

whence

and

it is also long and cumbersome. We will now show how the
same result may be obtained in a much more elegant manner.
Suppose the cell to be at the temperature 6, in a state of equi-
librium, and with its poles disconnected. Let the infinitesimal
quantity of electricity 8¢ pass reversibly through the cell, in the
positive direction. To this modification of state we may apply

the equation
8e=68n + SW.

T e T G Wbl
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The work done on the cell is

SW = — Ede,
80 that we have
Se= 00y — Ede.
From this equation, we find that
8= — 30— Ede,
and .
N (&=
(%)0_(30 JRE——— (151)
But 8Q Ede— A
a,,=3 == .
hence

@57

By substitution in equation (151), we obtain the equation

EN E-A
26),="9
whence
as before.

. Equilibrium between Different Phases of a Single
Substance

137. Let the system to be treated consist of a fixed mass of a
single, chemically defined substance. Let it be divided into two
parts, different in nature, but each homogeneous. Let the two
phases, as they are called, be in equilibrium with each other at
the temperature 6, and under the uniform surface pressure p,.
Such systems are of every day occurrence: a mass of ice and
water at the freezing point is the commonest example. Let the
two phases be denoted by I and II.

As normal variables of the system, we may use the volume and
the temperature ; the single outside action is then represented by
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the generalized foree (—p). This is, of eourse, on the assumption,
that we may neglect the effects of all such outside actions as
gravity and electrical forees, as well as the eapillary forces that
come into play at the bounding surfaces of the phases.

Let z, and r, be the specific volumes of the substance, in the
two phases: let A be the heat absorbed by the system, when a
unit mass of the substance changes, at the temperature 6, from
the first to the second phase. Such a change may be treated as
reversible, if it is slow ; for the two phases are always approxi-
mately in equilibrium. The general equation may now be
written

3‘—-'08"-?&!

or 8= —780—pir;

whence () I 4 P—— (152)

Let an infinitesimal mass, 3m, change from the first phase into
the second. We then have

5Q=Aém,
A
and &= f&n
. (]
The consequent increase of the volume of the whole system is
o= (r,—1,)0m:

hence we have the equation

G, =

Substituting in equation (152), we get
A

<_al’ R P 153

60), Oy(v2 —7,) (153)

or, since 6, and p, are the values of the temperature and pressure
at which the phases are in equilibrium,

(%’%)'=ﬂ*(_”3_’&). ISRy 1.7

%0, el of e, Oy of Bigeid B X bk of S {00 trample
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This equation tells us, at once, how a change of pressure will
change the temperature at which the two phases can coexist,
if we know the values of v, v, 6, and A. The correctness of
this result has been tested many times, and the formula repre-
sents the results of the experiments quite accurately. The
variation of freezing point with change of pressure was first
deduced by James Thomson in 1849, and the conclusion was
then shown to be correct, by the experiments of his brother, now
Lord Kelvin,* on the influence of pressure on the freezing point
of water.

In the case of a substance like water, which expands in

solidifying ; if A>0, (v,—v,)<0, so that ?g°< 0; or, the freezing
)

point is lowered by pressure. Most substances expand in the
process of liquefaction ; hence their freezing points are raised by
an increase of pressure.

The equation is equally applicable to other similar changes
of phase, that is, to the relation of the temperature and pressure
at which two phases are capable of coexistence. As examples
of such systems we may cite the following:—a liquid and its
vapour ; a solid and its vapour ; two allotropic forms of a solid ;
a solid and its gaseous dissociation products.

The Change of Osmotic Pressure with the
Temperature

138. Let us consider a solution, in which the osmotic pressure t
is proportional to the concentration when the temperature is
constant. Let p be this pressure, and let » be the dilution of the
solution, that is, the volume which contains one gram molecule

* Math. and Phys. Papers, 1, pp. 156 and 165.

+ We assume that the reader is familiar with the ordinary osmotic phe-
nomena : if he is not, he will find them fully described by Ostwald,
Lehrbuch der allgemeinen Chemse, 1, 2nd ed., Leipzig, 1891 ; also Solutions,
Longmans, 1891.

K
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of the dissolved substance. Our supposition may be expressed
by the equation
(pr)e = constant.

Let a volume of the solution, containing one gram molecule of
the dissolved substance, be taken ; and let the dissolved substance
expand, isothermally and reversibly, from the volume » to the
volume v+6v. This reversible process may be carried out as
follows: The solution is confined in a cylinder ; in the cylinder
there is fitted a semi-permeable piston, which allows the solvent
to pass through it, but is impermeable to the dissolved substance.
By moving the piston, it is possible to expand or contract the
space in which the solution is confined, while the solvent passes
freely through the piston, so that the only force exerted by the
solution on the piston is that due to the osmotic pressure of the
dissolved substance. If the force applied to the piston, from
without, differs only infinitesimally from that needed to balance
exactly the osmotic pressure of the solution, the motions of the
piston will be reversible. By an appropriate supply or with
drawal of heat, the operations may be made to take place at
constant temperature, or isothermally.

To this reversible expansion, we may apply the equation

3e=5Q + 5.

The work done by the dissolved substance during the expansion
is pdv, so that we have
SW = — pb.

If the solution had changed from its initial to its final volume
by our mixing the extra quantity of solvent with it directly,
a certain quantity of heat would have been developed. This is
known as the heat of dilution, and we may express it by Adv.
The quantity A is, obviously, the heat that would be developed if,
to an amount of the solution containing one gram molecule of the
dissolved substance, we added enough of the pure solvent to
double the volume of the solution,—supposing that A remains
constant through so large a range of dilution. The internal
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energy of the system composed of the volume v, of solution, and
the extra solvent needed to dilute it to the volume v+ &, would
in this érreversible process of mixing, decrease by an amount Adv :
for the external work is negligible, owing to the smallness of the
change caused in the total volume of the system by the mixing.
During a reversible operation, by which the system passes from the
same initial to the same final state, the decrease in the internal

energy must be the same as in the irreversible process : hence we
have
Se= — Adv.

From the last three equations we get, as the value of the heat
absorbed during the reversible expansion, the expression

8Q= — A8v+ pdo.
But since the expansion is reversible, we have
OIS et YOO (155)
From the equation
8e = 087 — p oy,
we also obtain the relations
Sy = 30— pbu,

ond G- G-

Substituting in this equation the value of &y from equation (155),
we obtain A

or, rearranging,

If the solution is already so dilute that further dilution pro-
duces no sensible thermal effect, we may write A=0. Equation
(157) may then be integrated, and it gives

0=p x constant. ........c..couuneenn. (168)
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The result is, that in the case of a solution in which the osmotic
pressure is proportional to the concentration, that pressure, at
constant concentration, is proportional to the thermodynamic
temperature, if the heat of further dilution is zero.

Precisely similar reasoning might have been applied to a gas
that obeys Boyle’s Law. We should then have found, that if the
heat of dilution, that is, the heat absorbed during an isothermal
free expansion, was zero or negligible, the pressure of the gas, at
constant volume, was proportional to the thermodynamic temper-
ature. This result would, however, be nothing new; for such a
gas is merely an ideal gas, and it has already been shown that the
ideal gas scale and the thermodynamic scale give proportional
readings.

As our object has been merely to illustrate the methods of
finding the conditions of equilibrium, from the equations which
apply to reversible displacements from a state of equilibrium, we
shall not go on to multiply these applications. The reader will
find numerous examples in the larger works on physics and
physical chemistry.*

* E.g., Ostwald, Lehrb. der ally. Chemie ; Nernst, Theoretische Chemie,
2nd edition, Stuttgart, 1898,



CHAPTER XI

THE CONDITIONS OF THERMODYNAMIC
EQUILIBRIUM

Summary of Conditions and Hypotheses

139, The validity of the general equations given in Chapter IX
rests on certain conditions and hypotheses, of which the following
are the most important :

I. ConpiTiON: The systems considered have no appreciable
kinetic energy (art. 27).

II. ConprTiON: The systems considered have equations of
equilibrium, which determine uniquely the outside actions needed
to preserve any given state of equilibrium (arts. 40 and 45).

III. HyroTHESIS: Kinetic energy being excluded by condition
I, the speeds of all processes vanish with the driving forces (art.
47).

IV. HyroTHESIS: No system can act as an infinite source or
sink of energy (art. 58).

V. HypoTHESIS: If a system has passed from a state 4 to a
state B, it is always possible, by some means or other, to make it
pass from B to 4 (art. 59).

VI. HyrotHESIS: The principle of the conservation of energy
(art. 61).

VIL. ConpITION: No outside actions are to be considered,
except such as involve the transference of energy which has the
same value as mechanical energy (art. 62).

VIII. HyroTHESIS: When heat is converted into mechanical
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energy, some heat must pass from a hot into a cold body (art.
106).

IX. HypoTHESIS: Any two possible states of a system may be
connected by a continuous series of states of equilibrium (art.
116).

140. Conditions I, II, and VII exclude a great number of
problems from consideration; but, on the other hand, they are
certainly fulfilled in a great many cases, to which our theory is
therefore applicable.

The hypotheses IV, VI, and VIII are hypothetical, only in
the sense that they are inductions from a limited, though very
large, number of observations. They are not known to be dis-
tinctly contradicted by any experiment, and we may regard them
a8 constituting, in the present state of our experimental know-
ledge, a set of laws found from experiment.

The remaining hypotheses, III, V, and IX, do not rest so
evidently as IV, VI, and VIII, upon a large assemblage of
experimental facts. They are commonly, often tacitly, made by
writers on thermodynamics, and the author can think of no case
in which they are not all true. If, however, such cases exist, our
theory is not applicable to them, but- remains valid for problems

- in which the conditions indicated are fulfilled. These hypotheses

might have been put under the heading of conditions. The dis-
tinction has been made, for the reason that what we have called
conditions are apparently not always satisfied, whereas experience
seems to show that our so-called hypotheses are universally true.

The Criterion of Equilibrium

141, In Chapters VIII and IX, we have deduced certain mathe-
matical statements relating to reversible and irreversible processes.
Reversible processes consist of series of states of equilibrium, and
are therefore not capable of realization. On the other hand, all
actual processes are irreversible. We have now to ask, what are
the necessary and sufficient conditions for thermodynamic equili-
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brium, and what will be the sense or direction of any real process.
We wish, if possible, to find a single criterion which shall enable
us to say, in any case, whether a system which is in a given state
will remain in that state ; or, if it tends to leave it, what will be
the nature of the change.

The results of the first law, or principle of equivalence, are
summarized in equations, and the sign of equality gives no indi-
cation of direction. Our criterion is, therefore, not to be sought
in the first law. The second law, when applied to reversible pro-
cesses, leads to equations; 4.c., when applied to states of
equilibrium, it gives no indication of direction. But when
applied to irreversible processes, a category which includes all
real processes, it leads to either equations or inequalities; and
an inequality may, evidently supply an indication of direction.
We therefore seek our criterion in some statement of the second
law ; for instance one of the following:

aQ
(p%=o
L (R S 159
I _éQ‘ <M= Nas ( )
4
3Q=068n;
or, in the combined statement of the two laws, namely,
8= 08+ D) Xt everiierenrnn, (160)

These formulas have the common property, that when they refer
to states of equilibrium, the sign of equality is to be used: for
real processes we have only been able to show that one sign or
the other must hold good.

If we make the assumption that the sign of equality is applicable
only to reversible processes, we shall have the desired -criterion.
Irreversible processes will then be characterized by the sign of
inequality. The equation will be the limiting form which the
statement of inequality approaches, as the forces acting on the
system, during the irreversible modification of its state, are so
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varied that the successive states of the system during the trans-
formation approach more and more nearly to being states of
equilibrium.

142, Tt is immaterial to which one of the formulas (159), (160),
we apply our assumption, since if made for one of them it holds
for the others. Let us assume, that in any cyclic change of state

aQ .
(j')7 20 e e (161)
only if the cycle is reversible, whereas if the cycle is irreversible
(j) i (162)

It follows from this assumption, that if, in every conceivable,
infinitesimal variation of state that is compatible with the nature
of the system, we have either

3e>08+ D, X8 coooviiii (163)
or Be= 080+ >, X8, coovviiene (164)

the system is surely in equilibrium. If, on the other hand,
variations of the variables are possible, which make

Be< 08+ D, X8z, oo, (165)

then the system is certainly not in equilibrium. For by making
it a fundamental condition that the system shall have equations
of equilibrium, we have excluded the intervention of passive
resistances to change® ; hence, as in the dynamics of a frictionless
system, if the active tendencies of the system—including in this
term the outside actions—are not so balanced as to produce a
state of equilibrium, some change of state will occur. The change
that actually does occur, will necessarily be of such a nature that

Se< 689+ D, Xoz.

* By a passive resistance is meant one analogous to friction ; resistances
which, like viscosity, merely retard changes of state, do not interfere with
the existence of equations of equilibrium, and are not excluded by the
condition that has been imposed.
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143. The criterion that we have set up rests on a pure hypo-
thesis, but an hypothesis of the same nature as those mentioned
in articles 139 and 140,—one of which the truth or untruth is
capable of being tested by experiment. If we ever find any fact
that contradicts a logical deduction from the hypothesis, then the
hypothesis is not universally true; no such fact is known to the
writer. On the contrary, experiments which have tested the
conclusions to be drawn from the hypothesis we have made, have
given results consistent with it, and each new experiment
increases the strength of the presumption that the hypothesis
expresses a real law of nature. In this respect, the hypothesis,
like the other statements that have been placed under thé same
head, differs from such special mental pictures as that of the
molecular constitution of matter, or the various mechanical con-
ceptions of the ether. For these latter, though they may in time
be shown to be inconsistent with facts, and therefore false, can
never, so far as we can see at present, be tested by any direct
experiment. They may prove to be useful, which is the most
important characteristic of hypothesis, but we can have no
expectation of a direct experimental test.

Nature of the Deductions Given for the Criterion

144. Many so-called proofs have been given of the proposition
that
d
(I) TOQ <0

for all real cycles, or of some equivalent proposition ; but so far
a8 the writer is aware, no one of these proofs really amounts to a
demonstration. They all appear to contain, in some shape or
other, an unproven assumption ; and it is better to acknowledge
at once, that we can not deduce the proposition from any of our
previous work, but must accept it as a new experimental pnnclple,
forming & pendant-to Carnot’s principle.
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As an illustration of the style of reasoning used in this connec-
tion the following—for which the writer alone is responsible—
may be given:

Consider a number of separate bodies or systems of bodies, each
at a uniform temperature, and each capable of change of state
quite independently of the others and without acting on or being
acted on by them, in any way whatever. Each body or system
has the same entropy as if the others were not present. If we
now consider all the bodies taken together, as constituting a single
system, we may, by a slight extension of our idea of entropy
which was reached by the consideration of systems of uniform
temperature, speak of the entropy of the whole system, as equal
to the sum of the entropies of all its parts taken separately,
whether they are all at the same temperature or not.

If the whole system be isolated in space, so that its energy
remains constant and it can neither receive nor give out heat, any
inequalities of temperature will tend to decrease by conduction
and radiation ; and such equalization of temperature is finally
inevitable, because there is no known means of completely pre-
venting conduction and radiation. Every quantity of heat @,
conducted or radiated from a part of the system where the
temperature is 6, will be received by some other part, or parts, of
which the temperatures 6,>6,>6,, etc., are less than 6. The
entropy of the part losing the heat will decrease by an amount

g, and the entropies of the parts receiving it will, on the whole,

increase by something more than 02 The entropy of the whole
1
system will therefore increase by at least @ %—-%),—a quantity
1

which is always positive.

Now we have reason to believe, that in any sort of process
which actually occurs, there are always slight inequalities of
temperature between different points of the system: hence an
increase of entropy is inevitable in any real process, going on
inside an isolated system of the kind we have described. The
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whole universe may be considered as an isolated system : hence
the proposition may be made, that the entropy of the universe
tends continually to increase. This proposition, known as the
PRINCIPLE OF THE INCREASE OF ENTROPY, is due to Clausius,
though his deduction is different from the one here given..

146. Aside from the fact that this principle contains a reference
to parts of the universe which are inaccessible to us, and where
we are therefore unable to test the truth of what we consider to
be physical laws, there would be little to be said against it, if we
could assume that it is allowable to treat the universe as made up
of separate parts, each of uniform temperature, and each capable
of variation of state independently of the others. But we are not
justified in taking so forced an assumption as a matter of course,
so that our proof is quite worthless. If, however, this principle
be accepted as an hypothesis, it may be made to do the same
service as the assumption, that

(p%<o

for all irreversible cycles. As we shall not use the principle in
the general form which it received from Clausius, no further dis-
cussion of it is needed here. Our object has been merely to
illustrate, by a somewhat flagrant example, the ease with which
general and vague hypotheses slip into such reasoning and vitiate
the result,—this result being in any case equivalent to the
assumption we have adopted, namely, that contained in the
statement, that for real, infinitesimal variations of state,

3e< 08+ >, Xba.

The reader will hardly find a more useful exercise in clear
thinking than the analysis of such proofs. Many of them are
unsatisfactory because of an ambiguous or vacillating use of the
term temperature. We have endeavoured to be consistent in
using this term as meaning the uniform temperature of the system
under consideration. To suppose that the temperature of any
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system is strictly uniform, would, of course, be absurd ; but as we
said in article 32, we make, and can make, no pretence to mathe-
matical exactness, in the treatment of subjects about which our
information is obtained by methods of limited though, perhaps,
high accuracy. “Uniform ” has therefore been used with the
meaning “sensibly uniform.” Whenever a transference of heat
has taken place between the system and its surroundings, it has
been supposed that the difference of temperature actuating the
flow of heat was infinitesimal, in all cases in which the tempera-
ture of the outside source or sink of heat was of any importance.
Thus the temperatures of the system and of the source or sink
have been represented by the same symbol.

@ibbs’s Form of the Criterion

146. The criterion of equilibrium may be put in various forms,
at the pleasure of the person using it. Two of these new forms
may be obtained as follows: If an entirely isolated system changes
ite state in any way, since no outside bodies are acting on it, no
work is done. Hence in equations (163) and (164) the term
EX &z vanishes, and we have

Se=08n. o, (166)
If the energy e is constant, i.c., if 8¢ =0, we have
(B)e=0. i (167)

If, on the contrary, the entropy is kept constant, s.e., if én=0,

we have
(B)y = 0. e e (168)

These two results may be stated as in the following terms :

I. “For the equilibrium of any isolated system it is necessary
and sufficient that in all possible variations of the state of the
system which do not alter its energy, the variation of its entropy
shall either vanish or be negative.”
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II. “For the equilibrium of any isolated system it is necessary
and sufficient that in all possible variations in the state of the
system which do not alter its entropy, the variation of its energy
shall either vanish or be positive.”*

These two theorems are stated and discussed by Gibbs in his
memoir ON THE EQUILIBRIUM OF HETEROGENEOUS SUBSTANCES,
and the second is used as a basis for his investigation of the
conditions of equilibrium in such substances.

*J. W. Gibbs, Trans. Connecticut Acad., 8, p. 109,



CHAPTER XII
THERMODYNAMIC POTENTIALS AND FREE ENERGY

Internal Thermodynamic Potential of a System at -
Constant Temperature

147. Under some circumstances, which are often approximately
realized in practice, the condition of equilibrium

. 3= 00+ D, X&y wovvieeiarren, (169)
and the condition of possibility of change,
Be< 08+ D X, e (170)

may be put into more convenient forms.
If we confine our attention to isothermal changes of state, it is
convenient to throw these two conditions into the form

W= —n80+ D, X%, oo, (171)
. W< =80+ D X8, e e (172)
or, since the temperature is constant,
WZ D X8, e (173)
LR3I € SR (174)

In these expressions, the sum >, X8z contains only terms which
refer to the external variables. If we wish to indicate all the
variables, both external and internal, we may substitute in the
above inequalities

D Xoo=, X.8a+ D, X80y e (175)
where DX =0. oo e, (176)
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If not only the temperature but the external variables 2,
%', ... etc., are kept constant, the conditions (173) and (174)
reduce to

From this we see, that if, of all the isothermal modifications of
the state of the system that can be produced by changes of the
internal variables, no one involves a decrease of the function ¥,
the system is certainly in equilibrium ; and that if any change of
state actually takes place, the change must involve a decrease of
Y. In other words: when the temperature and the external
variables are kept constant, ¥ tends continually to decrease, and
when it has reached a minimum, the system is in stable equili-
brium. The condition, that 8¢ =0, might refer to a maximum
value of ¢ ; but this would correspond to a state of unstable
equilibrium. Since no such state can be realized in practice, it is
unnecessary to consider the maxima of ¢.

In these modifications of state during which both the tempera-
ture and the external variables are constant, the function ¢ plays
a role analogous to that of the potential of the internal forces in
the case of a dynamic system upon which no forces are acting
from outside. For this reason, M. Duhem has given to i the
name of the internal thermodynamic potential of the system. We
have already seen (art. 123) that the same function, when looked
at from a different point of view, acts as a characteristic function.

Remarks on the Variables

148. The external variables are the only ones over which we
have any direct control. For if a change of state involves no out-
side work, we can not influence the change, directly and arbitrarily,
by the application of outside actions of the nature of forces. We
are, however, at liberty to suppose arbitrary variations imposed
upon the internal variables in the course of our theoretical
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reasoning, even though we can not produce such variations at
will.

As a familiar example of an internal variable, we may cite the
quantity z, occurring in the set of variables (z, 7, 6) which, as we
saw at the end of article 55, might be used to define the state of
a mass of fluid. We can not control directly the ratio z, between
the masses of the two phases of the fluid which are, or may be,
present ; i.e. we can not, by the application of an appropriate
force, give the variable z arbitrary values, independent of the
volume 7 and the temperature #; at least, this can be done only
when the two phases are in equilibrium. Nevertheless, we saw
that without z, the set of variables did not entirely satisfy the
fundamental condition of sufficing for a unique determination of
the outside actions which would preserve any given state of the
mass, as a state of equilibrium.

The internal variables are sometimes entirely overlooked, in
statements regarding the internal thermodynamic potential ; and
the processes performed by a system are spoken of, as if changes
in its state must be due to changes of the external variables. If
there were, in fact, no internal variables, a system that had both
its temperature and its external variables fixed in value, would be
incapable of any change of state whatever ; and theorems regard-
ing the changes of ¥ would, under such circumstances, cease to
have any meaning.

In the class of problems now under discussion, the internal
variables are the only ones that change their values; and to
investigate the changes in ¢, we have to find how it is influenced
by changes in these variables. That the value of ¥ may be
affected by such changes is obvious : for the statement that

X, 8z,=0,
which defines an internal variable, by no means implies that
K(35,~80,=0;
so that ¢ 7, and ¢ are functions of the internal variables and

,
ereas i D,
'
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change with them, though the temperature and the external
variables may not vary.

149. The most common class of problem in practice is that
in which the system to be studied is subject to no outside actions
except a uniform, normal pressure on its bounding surface. In
such problems, the state of the system may be determined by
the normal variables «',, 27, ... "%, v, 6. The internal thermo-
dynamic potential of such a system is

where e and %, and consequently ¥, are functions of all the
variables, and not merely of v and 6.

The necessary and sufficient condition for the equilibrium of
such a system, when kept at constant temperature, is, that for
all possible changes of state which leave the temperature constant,

we shall have
Y Z = P8O e, (180)

The condition of the possibility of any change is, that it must
be one for which

Suppose that both the temperature and the volume are kept
constant, so that only the internal variables can alter their
values ; the condition of equilibrium then takes the form

QY0 oo (182)

and the condition of the possibility of a given change is, that
the change shall make

In the treatment of problems of this nature, y is often called the
thermodynamic potential at constant volume.

The mass of fluid discussed in article 55 offers an illustration
of the sort of system just mentioned, there being one internal
variable in addition to the temperature. If a system be com-
posed of a mixture of several substances, various changes of

phase may be possible. There may be present, simultaneously, a
L
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gaseous phase, one or more liquid phases, and one or more solid
phases. The number of internal variables must be sufficient to
determine completely the masses and compositions of all the
phases.

Total Thermodynamic Potential of a System at
Constant Temperature

150. It may happen that the generalized forces acting on the
system have a potential 7. In other words; the outside actions
may give to the system, during any variation of its state, an
amount of energy which depends solely on the initial and final,
and not on the intermediate states. Under these circumstances,
the work of the generalized forces may be written

W=, X8z= -8V, .ccvueiiirnnnnn (184)
and the conditions (173) and (174) may be thrown into the form
SWHP)ZO0 i (185)
for equilibrium, and
SWH+P)<O0 e (186)
for possibility of change of state.

For a system subject to such forces, the function (Y + V) acts
as a potential in isothermal changes of state, just as ¢ alone did
when the outside work was zero: hence (Y + 7) has received
from M. Duhem the name of the tofal thermodynamic potential
of the system. The system will be in a state of stable equi-
librium when (¢+ /) has decreased to a minimum, and not
until then.

161. There are two important cases in which the generalized
forces do have a potential. The first of these is the case where
the external variables are kept at fixed values, so that the
external forces do no work at all, and 8/ =0. The total thermo-
dynamic potential is then identical with the internal potential y,
so far, at least, as its variations are concerned.
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The second case is that of constant generalized forces. The
potential of the outside actions is, in this case,

) DD ¢ A (187)

the work done on the system during a change of state being
the decrease of the potential, or

-8V=2) Xé.

Any system subject to outside actions that are represented by
constant generalized forces has, therefore, a total thermodynamic
potential, of which the expression is (y — >, X), or

D P ¢ T (188)

The familiar function { acts, we see, as a thermodynamic potential
for constant forces and constant temperature ; and the conditions
of equilibrium, and of possibility of change of state, may be
written ;

for equilibrium, and

for change.
If the only outside action is a uniform, normal pressure on the
bounding surface of the system, { takes the form

and it is then known as the Thermodynamic polential al constand
pressure.

Further Remarks on Internal and External Variables

152, The changes to which the value of { is subject when the
outside actions are constant, will not, in general, be due solely to
changes in the internal variables : that would mean, that a system
having no internal variables except the temperature would, under
the action of constant forces, be incapable of any isothermal
change of state at all, and we cannot assert that this is the case.
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A mass of gas, if homogeneous and not subject to internal
chemical change within the range of temperature and density
considered, may have its state completely defined by the temper-
ature 6, an internal variable, and the volume v, an external
variable with the generalized force (- p). If the temperature is
kept constant, the only changes possible are those defined by
changes in the volume. If the pressure acting on the gas is kept
constant, the gas expands or contracts, until its volume is such
that the pressure of the gas, in a state of equilibrium at that
volume, is the same as the constant pressure applied from outside.
When this stage has been attained, the gas is in equilibrium, but
not until then. This may be expressed by the truism, that the
inverse variables (- p, 6) do not fix the state of the system unless
it is already in equilibrium. We can evidently not use the
inverse variables to define the state of the system, when con-
sidering any changes except infinitesimal displacements from a
state of equilibrium, and in other cases we must think of the
state as defined by the original variables.

To this illustration, the objection may be made, that it violates
the condition that the processes considered shall not involve any
appreciable kinetic energy : the objection is valid, but the example
has been introduced merely as an analogy and not as an actual
illustration.

163. If the system has no internal variables except the
temperature, which is constant, it will, if the forces are once
adjusted to a state of equilibrium and kept constant, retain that
state indefinitely. But if there are one or more internal variables,
and the forces are merely so adjusted that they would preserve
equilibrium if the internal variables could be constrained to keep
the values they have at the instant in question, the state will not,
in general, be one of equilibrium. For the internal variables can
not be thus constrained. The freedom of the internal variables
permits a change of state, even though the forces be constant.
The change goes on in the direction of decreasing {, and comes to
an end when ¢ has reached a minimum.
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164. The transformations thus permitted by the existence of
the internal variables, are not necessarily expressible in terms of
them alone, for variations of the external variables may also be
involved.

To illustrate this point, let us consider another homogeneous
gaseous system, but this time, one which is capable of an internal
chemical change. The state of the system will depend upon one
. or more internal variables, beside 6 and the external variable v.

At high temperatures, nitrogen dioxide, N,0,, decomposes or
dissociates partially, according to the reaction

N,0, &= 2N0,.

This reaction, like many similar ones, goes on, not instantaneously,
but at a measurable rate, depending on the temperature. It
resembles, in some respects, a process of change of the configura-
tion of a purely dynamic system, which has its motions strongly
damped by viscous resistances, but has no frictional resistances to
prevent its having equations of equilibrium.

The state of a given mass of the mixture of N,0, and its dis-
sociation product NO, may be defined by the normal variables
(z, v, 0), = being the fraction of the whole mass which is present
in the form NO, Let us suppose, that at the start we have the
gas at ordinary atmospheric pressure and temperature. If it has
been kept for some time under these conditions, most of the
mixture will be in the undissociated state, corresponding to.the
formula N;0,. Let the temperature be now raised, suddenly, to
a much higher point, say 400°, and then kept constant. The gas
mixture, under these new conditions, is no longer in a state of
equilibrium : a further decomposition into NO, takes place, and
this change of composition is made evident* by the accompanying
increase of volume, one volume of N,0, giving two volumes of
NO,. The modification of state which we here choose to look

*We are here supposing that the chemistry of the process has been
thoroughly investigated, so that the quantities of N,0, and NO, present
are known, or may be found, quite independently of the volume.
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upon as due to a change of the internal variable z, is accompanied
by a change of the external variable v. During this change the
total thermodynamic potential { decreases toward a minimum,
and when this has been attained the reaction comes to an end.

If, after the temperature had been made stationary, the volume
also had been fixed, the change of the internal variable z would
have involved an increase of the pressure. The direction of the
process and the condition of equilibrium would then have been
seen by the consideration of the changes of the internal thermo-
dynamic potential ¢.

166. It has just been shown, in a particular case, that the
change of an internal variable, while the temperature and the
forces are constant, may involve a change in the value of an
external variable. The opposite is also possible: an internal
variable may change without influencing the value of any external
variable.

Let the system to be considered be a homogeneous gas mixture,
which consists, in its initial state, of chemically equivalent masses
of iodine vapour and hydrogen. These gases tend to unite and
form hydrogen iodide, according to the reaction

H;+1, 2HI
If the pressure and temperature be kept constant, the reaction
goes on slowly at low temperatures, and faster, as the temperature
at which the reaction occurs is raised to a higher and higher
point.

The state of the mixture may be defined by the normal
variables (z, v, 6), where z is the ratio of the mass of hydrogen
iodide present to that which would be produced by complete
combination of the two elemehtary components of the mixture.
The process which goes on, is a change in the value of z; and in
the present case the external variable, the volume, does not change
with 2 or, at most, only very slightly. For in the production of
two volumes of the hydrogen iodide, one volume of hydrogen and
one volume of iodine vapour vanish. The direction of the trans-
formation and the coordinates of the state of equilibrium are, as



155] THERMODYNAMIC POTENTIALS 167

before, to be found by considering the changes in ¢, as the reaction
goes on. If the temperature and the volume had been kept
constant, instead of the temperature and the pressure, the nature
of the possible changes would have been evident from the con-
sideration of the alterations in the value of the internal thermo-
dynamic potential y. If the reaction causes no change at all in
the volume, the variations of y and of { are identical, so that it is
of no importance which one of these functions we use.

Isentropic Potentials

156. The isothermal potentials ¥ and { are of especial practical
importance, on account of the ease with which we can keep the
temperature of a system of bodies, on which we are working,
nearly constant. Theoretically, however, there is nothing to
prevent our keeping other quantities than the temperature
constant.

The relations Be= 08+ D, X8, oo, (192)

and BX =087 — 328X, wererererrreerenenes (193)

show that ¢ and x might be used as potentials, if the entropy and
the external variables, or the entropy and the generalized forces
were constant. In other words: the functions € and x might be
used as internal and total isentropic thermodynamic potentials.
Practically, however, we have no such simple means of keeping
the entropy of a system constant as we have for the temperature ;
so that this way of looking at e and x is mainly of theoretical
interest.

The Entropy Principle
167, The fundamental relation,
8= 08+ D, Xox,
may be thrown into the form

1, 1
IEFUEE )P ¢ NN (194)
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If this statement be applied to a completely isolated system, it
reduces to

for complete isolation implies constancy of the total energy ¢ and
absence of all outside work >, X&. We are thus led back to
the Principle of the Increase of Entropy. If we consider only
isolated systems, or if we include in the system all the bodies
which are influenced in any way whatever by the changes of state
of the bodies under our more particular scrutiny, the function
(—7) may be used as a potential. It acts as a potential for
constant energy and constant external variables; for in the case
of an isolated system, there are no external variables, because
there are no outside actions. Any actual variation of state will
involve an increase of the entropy of the system, and when the
entropy has reached a maximum, the system will be in stable
equilibrium. :

It should be noted here, however, that we must not, without
further enquiry, apply this principle to systems that do not have
a uniform temperature ; for our whole proof of the existence of
the function 7, which is called entropy, has assumed that the
system under consideration had a uniform temperature. Before
making such an application, we should have to extend the idea of
entropy to system in which the temperature was variable from
point to point.

168. If we attempt to find a function which shall act as a
potential when the energy and the outside actions are constant,
we are led to the expression

08+ D, 8(Xz) Z de+ D, 28X, cvvnnnnne. (196)

In order to have, in the first member, the variation of a function
of the variables which define the state of the system, we are here
obliged to make the additional condition, that the temperature 6
shall be constant, as well as the internal energy and the outside

actions. If we let
L Cx & P ¢ N (197)
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we have, for constant temperature,

(B)e =8+ D 28X ;5 cvvevveererieeaenens (198)
so that w acts as a potential, for constant energy, temperature
and forces. These conditions are too complicated and artificial to
deserve further consideration.

The Free Energy Principle
1569. Let us return to the statements that

8y=2) Xéz,
for isothermal modifications of state which are reversible and
irreversible, respectively. The work done by the system and
obtainable from it during any infinitesimal, isothermal variation
" of its state is expressed by - EX 8z, which will be zero unless
some of the external variables are involved in the change. Hence
if we represent by F% the work obtainable from the system while

it passes isothermally from a state 4 to a state B, we have, by
integrating (199), '

¢,—¢_.zjjzxsw= P,

or FEo = Yn eeeeeeeceeeenesans ov...(200)

This tells us, that the work which the system can do, during
any real isothermal change of state, is less than the decrease of
its internal thermodynamic potential . By comparison with
the two statements (199), we see, that as the passage from 4 to
B is'made more and more nearly reversible, the work obtainable
from the change approaches, as its limiting value, the decrease of
¥ during the process. This decrease is entirely definite, whether
the process be reversible or not. For the value of ¢ is given by
the equation '

and both € and 7 are functions only of the variables which define
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the two states. On account of this property of the function ¢,

Helmholtz * gave it the name of the FREE ENERGY of the system.

The free energy principle may therefore be stated as follows:

The work obtainable from a system during any isothermal change of its

stale i3, at most, equal to the decrease of the free energy of the system.
In all reversible processes we have

> |
;y’:gs—:':-r,w)r 8¢=08q+2X8a',,
or Sy=-n80+>, X&;
whence it is evident that

- (¥
"= =-(35).
We may therefore write equation (201) in the form

Y=c+ —‘g, ettt ebesan s (202)
X
an equation which is often used as an expression of the free

energy principle, and which may be interpreted as follows: In
any isothermal modification of the state of a system, the work obtainable
Jrom the process i3, at most, equal to the decrease of the internal energy
of the system, plus the product of the absolute temperature and the
rate of increase of the work obtainable with increase of temperature.
Equation (202) may also take the form

= - oza%('g), ........................ (203)

in which it is sometimes useful.
160. Equation (202) might have been obtained directly from
the equation

3Q &0
g=?’ ............................. (204)
Let a system pass reversibly, at the temperature 6+ 86, from a

state A to a state B. Let it then be cooled to the temperature 6,
and returned, by a reversible process at the temperature 6 and

* Helmholtz, Wissensch. Abhandl., 3, p. 958.
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an infinitesimal rise of temperature, to its original state. The
successive states in one of the isothermal processes are supposed
to be identical with the corresponding states in the other, except
a8 regards the temperature. The system has thus performed a
reversible cycle between two temperatures infinitely near together.

If we let P be the work obtainable from the system during its
passage from 4 to B at the temperature 6, and let P+ &P be the
work obtainable from the same process at the temperature 6+ 36,
the total work given out by the system during the cycle is the
difference of these, or 8P. During the process at the higher

- temperature, the energy of the system decreases by

e Qe
e+,5980]4—[e+a—080:|‘.
Therefore, since the whole work done is P+ 8P, the heat which

the system must have taken in in order to keep its temperature
constant, is

Oe Qe
a5« (P+8P)- [¢+,(—>980:|‘ + e+,(>—089]‘ =@.
We therefore have, by equation (204),
- P 88
Q 0+3¢
or, at the limit,
P 80,
P-(e,—¢5) 6’
oP
whence P=(e,—¢5)+ 0@-.

If instead of (e, —¢;) we write simply ¢ understanding by this
the decrease of the internal emergy of the system during the
passage from A to B, the last equation reduces to

oP
P=c+0 ST s (205)
Since P is the work obtainable from the system: it has precisely
the same significance as the free energy of Helmholtz, so that

* oo new i dle prrees.

’
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equations (202) and (205) are identical in meaning. Although
this deduction is more elementary than the one first given, and
comes more directly from the theorems of Carnot and Clausius,
it is less easy to analyze and less clear—so, at least, it appears to
the writer.

The reader will find many interesting examples of the practical
application of this principle in Nernst’s Theoretical Chemisiry.*
One illustration will be given in the next chapter, together with
an example of the use of the thermodynamic potential.

* Nernst,, Theoretische Cheme, 2nd. ed., Stuttgart, 1898.



CHAPTER XIII
APPLICATIONS

Electromotive Force of a Reversible Galvanic Cell

161. We have already (arts. 135 and 136) obtained a relation
between the electromotive force of a reversible galvanic cell and
the heat of the reactions involved when the cell is giving out a
current. We shall now give another deduction of the same
result, by using the free energy equation,

o
¢=¢+03—;¢, cerieisenasanteniraenans (206)
of which the interpretation has been given in article 159.

Let the cell, at the temperature 6, have an electromotive force
E when its poles are disconnected. Let a unit quantity of
electricity pass through the cell reversibly, in the positive or
natural direction. The outside work, obtainable from the cell
during this process, is evidently equal to the electromotive force,
so that we have *

. oy ©OF
W?[t’lLﬁrM‘) = Y=Bp =g, (207)
The decrease of the internal energy during the process is the
same as if the cell had gone from the same initial to the same

* We are, as before, disregarding the slight changes of volume of the cell
as of negligible importance: in the case of a gas battery, this would, of
course, not be allowable.



174 THEORY OF THERMODYNAMICS [CHAP. X111

final state, through any other set of intermediate states. If the
cell had changed its state merely by direct chemical reaction,
without producing any current, it would, at constant temperature,
have developed a quantity of heat A, where A is the heat of
reaction for quantities of the various substances equal to those
actually involved in the reactions which accompany the passage
of a unit of electricity through the cell. Hence its internal
energy would have decreased by A,—which is, therefore, the
decrease for any path between the same two states. We have,
consequently, for the value of the term ¢, in equation (206),

€= A,

and equations (206) and (207) give us
CE=A+6208 i (208)

. the same equation that we obtained in articles 135 and 136.

The mathematical formulae which we have used are the same
in substance, in all three deductions: any one of the methods is
equivalent to either of the others. The only difference is in the
physical way of looking-at the matter. To those who have
grasped the notion of free energy, the present proof of equation
(208) will probably seem the most satisfactory ; because, admitting
the truth of equation (206) as established, it is more simple than
the method which uses a reversible cycle, and less mathematically
abstract than the consideration of changes of entropy.

Equilibrinm of Phases

162. We have already shown, in article 137, that when two
phases of a single substance are in equilibrium, the temperature
and pressure needed for the state of equilibrium are connected by
the equation

P_ Ay _
5—0 = W}p—l), ......................... (209)

where v, and v, are the specific volumes in the first and second
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states, respectively, and A, is the latent heat absorbed in the
transformation of unit mass of the substance from the first to
the second phase. If the phases are solid and liquid, this equation
defines a curve in the (p, 6) plane (Fig. 27), such that all the

?

Fi16. 27.

points representing simultaneous values of the pressure and
temperature for equilibrium of the liquid and the solid phases lie
on thig curve.* We may call this the solid-liquid or fusion curve
(SL), Since the change of volume in melting is always small,

the term (v, — v,) is always small : therefore g% is large, and the

curve rises steeply as @ increases,—or, for substances like ice
which contract in melting, as 6 decreases.

If we now let v, be the specific volume of the substance in the
state of saturated vapour, and let A, be the latent heat of
evaporation, we have in the same way, the equation

P s
00 0(v;—v,)
This is the differential equation of the liquid-vapour, or evapora-
tion curve (L7), the points of which give the temperatures and
pressures at which the liquid and gaseous phases can coexist.
Since v, is, in general, for temperatures near the freezing point,

......................... (210)

* To plot the curve we must, of course, know by experiment the position
of some one point through which it passes, in addition to knowing the
values of v, vy, and A, as functions of p and 6.
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enormously greater than v,, while A,; is not so much greater
than A,; it follows, that at temperatures near the ordinary

freezing point of the substance, the term g_’é is less than for

the curve (SL), or the evaporation line is less steep than the
fusion line.

Now consider the equilibrium between the solid and the
gaseous phases. By reasoning like that used in the former
cases, we obtain the equation

.........................

where A, is the latent heat of sublimation. This equation
defines a curve, of which the points represent the pressures and
temperatures needed for equilibrium of the solid and its vapour :
it is the differential equation of the solid-vapour, or sublimation
curve (S7).

163. It may readily be shown that these three curves meet
in a point. If we disregard surface energy—that is, capillary
actions—we may regard the energy, entropy, and volume of a
homogeneous mass of the substance, at a given temperature and
pressure, as proportional to the mass: hence y and { are also
proportional to the mass, if referring to a homogeneous bedy.
Let (;, ¢, and {; be the thermodynamic potentials, at constant
pressure, of a unit mass of the substance, at a given temperature
and in the solid, liquid, and gaseous states, respectively. These
potentials are functions of the normal variables (v, ), or also,
since we are considering only states of equilibrium, of the
inverse variables (—p, 6). Let us consider the system at a time
when it contains a mass m, of the first phase and a mass m, of
the second phase, the sum of these masses being constant and
equal to the total mass: we have, then,

My + My =constant. ...........ceeeennnnne (212)
The potential for the whole system, at constant pressure, is

=Myl + Mol veveeviniiiiiiiiiniinn, (213)

—————
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If the system is to be in equilibrium as regards changes in the
relative masses of the two phases, we must have, during any
such change,
' 8¢=0.

But since, if both phases are actually present, any virtual change
in one direction may also take place in the opposite direction,
the sign of inequality is excluded, and we must have, as the
condition of equilibrium, '

T (214)
By equation (213), this condition may be expressed as.
GOmy +60my=0; .oooviinniiiiiinnnan, (215)

for the change is supposed to take place at constant pressure
and temperature, so that { and {;, are constant. But by
equation (212) we have &m,+6m,=0: hence the condition of
equilibrium may be written :
G=6=0. coirnriiiiii (216)
This equation must be satisfied for all points on the line (SL),
and since {; and {; are functions of the pressure and temperature,
it follows that (216) is in reality an equation between p and 6.
In other words: (216) is equivalent to the integral equation of
the fusion curve.
Similar reasoning may be applied to the other two pairs of
phases, (L7) and (SV), so that we have, as the equations of
the three curves:

(2 - {s =0,

G- =0.
It is evident at once from the form of these equations, that any
point lying on two of the curves lies also on the third ; or if two
of the curves pass through a point, the third passes through the
same point. That the curves do not coincide through any finite
distance, nor even have contact, is shown by the different values

G-6=0 }

of g—% obtained, for given pairs of values of p and 6, from the
C M
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equations (209), (210) and (211). Now it is always possible, by
warming a solid in contact with its saturated vapour, to reach the
melting point. Further addition of heat, at constant pressure,
causes the liquid phase to appear and to grow, at constant
temperature, at the expense of the solid phase until there are
present only liquid and vapour, after which, further addition of
heat, if accompanied by proper regulation of the pressure, takes
the system to points on the curve (LV). Hence we always do
have two of the curves intersecting—or at least meeting—and it
follows, that there is always at least one point where the three
curves meet. Such a point is called a triple point ; for it is evi-
dent that at the temperature and pressure represented by this
point, all three phases can coexist in equilibrium. For this
particular point, we have:

G=G=Co e SRR (218)

164. If the representative point passes along one of the curves
toward the triple point, there being always two phases in equili-
brium, when the triple point is reached, the third phase appears,
and we have the three phases coexistent. By proper regulation
of the pressure and by proper supply or withdrawal of heat, any
one of the phases may be made to disappear and the representative
point may be made pass out along any one of the three equili-
brium curves.

If, after leaving the triple point, the pressure and the tempera-
ture are not so changed as to continue to satisfy the equation of
one of the curves, the representative point will pass into one of the
three fields @, @, and @ Suppose, for instance, that after
moving out a certain distance on the evaporation curve (L7), we
attempt, by reducing the volume, to increase the pressure at
constant temperature : the result will be that the vapour will begin
to disappear, and as long as both phases are present, the pressure
will remain constant. After the vapour has all been condensed,
the pressure may be raised as much as we like and the represent-
ative point enters the field @. Unless we go so far as to reach
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a point on the fusion curve (SL), only the liquid phase will be
present. If, on the other hand, we had attempted by increasing
the volume to diminish the pressure, the liquid would have
evaporated, the gaseous phase growing at the expense of the
liquid, until only the vapour remained. Further increase of
volume would then have been accompanied by a decrease of
pressure, and the representative point would have entered the
field @, of which the points represent possible states of the
unsaturated vapour.

Similar reasoning may be applied to all the curves, and we
see that in the field @ only the solid phase, in the field @

only the liquid phase, and in the field @ only the gaseous phase
can exist in absolutely stable equilibrium. This may be ex-

pressed analytically, by saying that in the field @

[P P A (219)
in the field @
G<Co <G oo, (220)
and in the field (V) -
G<Ch G<lo oovvviriiiiniinnn (221)

166. The system we have been discussing offers an example of
one whose state may be defined by more than two independent
variables. The normal variables which it is most natural to select
are v, 6, m;, and m,, the mass of the third phase being connected
with m, and m, by the equation

M, + m, + mg = constant.

It is evident that m, and m,, like 6, are internal variables: the
only external variable is v, and its generalized force is (- p).
For given values of these normal variables, the system can be in
equilibrium, only under the action of a definite pressure,— they
give a unique determination of the pressure needed for equilibrium.

The inverse variables are —p, 6, m,, m,, and if the system is
in equilibrium—the only case in which the inverse variables can
be employed—the inverse variables determine a single possible
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volume, if more than one phase is present. If, however, the
system remains homogeneous, there may, perhaps, as stated in
article 55, be more than one possible volume, but not a con-
tinuous infinity of volumes.

Though we have treated two of the quantities m,, m,, m, a8 in-
dependent variables in seeking the conditions of equilibrium, that
oondition, when found, leaves the system with only two instead
of four degrees of freedom. If all three phases are present, both
the pressure and the temperature are fixed and can not receive
even infinitesimal variations ; but the masses of two of the phases
may be varied arbitrarily,—within limits imposed by the total
mass of the substance. If two phases are present, either the
pressure or the temperature may be varied arbitrarily, but only
one of the masses, the other being then determined by the first.
If only one phase is present, both the pressure and the tempera-
ture may be varied arbitrarily, but the mass of the single phase is
constant.

166. Our general result may be stated as follows :

I. Three phases of a single substance may coexist for one or
more discrete points in the (p, 6) plane. For such a set of
coexistent phases, no variation of either p or 6 is possible, without
the disappearance of at least one of the phases. The system of
phases may be called a nonvariant system.

II. Two phases may coexist at points lying along certain lines
in the (p, 6) plane. One of the variables (p, 6) may be changed
arbitrarily ; but if the two phases are to continue in equilibrium,
the other variable must have a value determined by that of the
first. The system is capable of one arbitrary variation of state,
and may be called a unirariant system.

III. At any other point in the plane, only one phase can exist
in absolutely stable equilibrium. Its temperature and pressure
may be varied independently, so long as only one phase is
present. The system is now capable of two independent, arbitrary
variations of state, and may be called a bivariant system.

The triple point is sometimes called a point of transition, because

— el i
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as the representative point passes through it, following first one’
and then another of the curves, one phase disappears and another
appears in its place. The curves (SL), (LV), and (S7) are often
known as the boundary curves for the given set of phases.

167. In practice, it is found impossible to follow the sublima-
tion curve above the triple point. The triple point, when the
phases under discussion are solid, liquid, and vapour, is the
melting point of the solid under the pressure of its saturated
vapour; and when this temperature is reached, the solid invariably
begins to melt, unless the pressure is changed so as to keep the

?

F1a. 28.

representative point in the field @ (Fig. 28) or on the curve
(SL). Tt is thus not possible to find points in the field @,

which correspond to the coexistence of the solid and its vapour.
By using proper precaution, it is, however, possible to cool a
liquid in contact with its vapour below the freezing point, and we
may thus reach points on the curve (7'D) which is the continua-
tion of the liquid-vapour curve. The points on the curve (I'D)
represent states of equilibrium of the liquid and gaseous phases,
but not states of absolutely stable equilibrium. The equilibrium
is not unstable ; for though it may easily happen that a sudden
change of the liquid into the solid form is induced by some slight
disturbance, yet such a finite change is not caused by an
infinitesimal disturbance. The two phases are in a state of equi-
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librium, but the state is not the most stable possible at the given
temperature and pressure. Such states of equilibrium, which are
not unstable, neutral or absolutely stable—i.c., the most stable
possible under the given conditions—are known as mefastable
states.

For all the points on the curve (I'D) we have the relation

or in other words: if the two coexistent phases change into
the third, the system will finally have a smaller thermodynamic
potential and will be in a state of more stable equilibrium
—the most stable possible at the given temperature and
pressure.

All the relations of the different states of equilibrium possible
to a fixed mass of a single substance, may be much more clearly
represented by the use of surfaces. If at every point of the
(p, 6) plane we erect a perpendicular, and mark off on it lengths
proportional to the values of {, {,, and {;, the assemblage of points
thus obtained will lie on three surfaces—or three sheets of a single
surface—intersecting in curves, of which the curves (SL), (LV),
and (SV) (Fig. 27) are the projections on the (p, ) plane. The
relations between (j, {;, and {;, and the relative stability of certain
states, may be seen at once from the form of the surfaces. The
consideration of these thermodynamic surfaces would, however,
lead us too far away from our immediate object, which is a mere
illustration of the theoretical principles already deduced. For
the study of such thermodynamic surfaces we may refer the
reader to Gibbs.* Many examples of their use will be found in
various papers which have appeared in the Zeitschrift fiir physikal-
ische Chemie, by van der Waals and others. t

168. It has not yet been proved that the sublimation curve
(TC) (Fig. 28) really does lie below the continuation (7'D) of the

*Gibbs, Trans. Conn. Acad., 2, p. 382; 8, p. 172-189; also Thermo-
dynamische Studien, Leipzig, 1892.
+ van der Waals, 8, p. 133 (1890).
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evaporation curve ; but we may easily do so, by referring to the
differential equations of the two curves,—namely

P_ Ay
20 0(_”8"73), ......................... (233)
PN
20~ (s, _3”1) ......................... (224)

Let us consider the curves at points infinitely near the triple
point ; that is, let us see how they are arranged upon starting
out from the triple point. In the first place, p and 6 may be
treated as the same for both curves. In the second place, since
g is very much larger than », and v,, which are nearly equal, we
have
Vg = V=03~
very nearly. But A,;> A, : at the triple point, in fact,

Mg=A1p+ Ay
—or the latent heat of sublimation is the sum of the latent heats
of fusion and of evaporation. For direct sublimation leads, by a
process involving the same amount of external work, to the same
final state as successive fusion and evaporation. It follows, that

g—z is greater for the sublimation curve than for the prolonged

evaporation curve. Hence, as it leaves the triple point, it at first
sinks faster than the evaporation curve, and it always remains
below, unless it returns to meet the evaporation curve in a new
triple point. The vapour pressure of a solid is, therefore, always
less than that of the supercooled liquid at the same temperature.

169. The conclusions reached, as to the possible states of
equilibrium of a substance which can separate into a solid, a liquid,
and a gaseous phase, are quite general. The phases may also be
two allotropic solid forms of the substance and a liquid or a
gaseous phase. Whatever the possible phases, so long as there is
present only a single, chemically definite substance, three co-
existent phases form a nonvariant system, two a univariant
gystem, and one a bivariant system.
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This statement is a particular case of a general theorem, due to
Gibbs and known as the PHASE RULE. The theorem may be
stated somewhat as follows:

Let us consider a system consisting of one or more different
phases in contact with one another, each phase being homogeneous.
Let the phases consist of mixtures, in various proportions, of K
different substances, the mass of each one of the substances con-
tained in any one of the phases being variable independently of
the masses of the other substances in that phase. Let the only
outside action be a uniform pressure on the bounding surface of
the system of phases:

Then the maximum number of phases that can exist simultan-
eously in a state of equilibrium is (K'+ 2). This number of phases
can coexist only for particular discrete points in the (p, 6) plane,
and the phases form a nonvariant system.

If (K + 1) phases are coexistent, they form a univariant system,
the relation of the pressure and temperature needed for equilibrium
being shown by lines in the (p, ) plane. '

Any number of phases less than (K + 1) may coexist in equili-
brium at other points in the (p, 6) plane.

From any multiple point where (K+2) phases can exist to-
gether in equilibrium, (K + 2) boundary curves start out, along
any one of which (K+1) phases may coexist, forming a uni-
variant system.

We shall now proceed to give a partial proof of these state-
ments. The discussion will not be either complete or rigorous :
for a thorough treatment of the subject the reader may be
referred to the original memoir of Professor Gibbs.*

The Phase Rule

170. Let the system be composed of a mixture of K substances
8y, 8p ... Sp: let the total amount of each of the substances be
*@Gibbs, Trans. Conn. Acad., 8; compare also Riecke, Zeitschr. fir

phys. Chem. @, p. 268 (1890) ; Duhem, Journal of Physical Chemistry, 3,
Pp- 1 and 91 (1898) ; and Saurel, sbid. 3, p. 137 (1899).

';.bf...w,{wi.'ﬂa .



170] APPLICATIONS 185

fixed. The substances must be such that it would be possible to
vary the quantity of any one of them present in the heterogeneous
mass, without varying the quantities of the others. Let these
substances be called the components of the heterogeneous mass.
Let the whole mass be at the uniform temperature 6, and let the
only outside action be a uniform pressure p on the bounding
surface. Let the pressure be uniform all through the mass: in
other words, let us disregard gravity, capillarity, electrostatic
forces, etc., and let no portion of the whole system be solid. Let
the number of separate, homogeneous phases into which the mass
is divided, be 1.

Since the only influence which one homogeneous phase can
have on another is at the surface dividing the two phases, the
amount of each phase present has no effect on the conditions of
pressure, temperature, and concentration needed for equilibrium :
this is a well-known experimental fact.

The components of the mass must be such that in any one
phase it is possible to vary their concentrations independently.
If the mass of any component in a given phase is not zero, it may
receive both positive and negative variations, and it is called an
actual component of the given phase. If in any phase a given
component is not present but might be, i.c., if its mass in that
phase can receive positive but not negative variations, it is called
a possible component of that phase.

We shall assume that each phase is continuous and in contact
with every other phase, so that infinitesimal variations of com- -
position need never involve motions of matter through finite
distances, but only across dividing surfaces. The geometrical
forms of the phases are otherwise of no importance, and do not
enter into consideration.

The state of any phase of fixed composition is defined by the
normal variables (v, ), or for equilibrium, by the inverse
variables (—p, 6). If the phase is considered as of variable
composition, its state is defined by the values of the quantities
(v, 6, my, my ... m;), where m,, m, etc.—the masses of the
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various components of the phase—are internal variables. The
state of the phase may also, for equilibrium, be defined by the
inverse variables ( - p, 6, m,, m,, ... my).

The state of the phase as influencing the other phases depends
on its concentrations, and not on its total mass. Hence we may
consider its state as, for this purpose, defined by the quantities

( , 6, q_an’ "T:?, l':f), or (p, 6, ¢y g ... Cg).

171. The state of the whole system is determined by the
values of the variables which determine the states of all its
various phases. These are the following [¢(X + 1) + 1] quantities :

’ ’ ’
6, v, m'y, my ... mg,

" ” ”
o', m", m'y, ... my,

.........................

where v* denotes the volume of the phase x, and m",, the mass
of the component S, in the phase z.

These quantities are greater in number than the degrees of
freedom, or possible arbitrary variations of state of the system.
We have, in.the first place, the K equations:

.
z‘ m, = const.
i

m, = const.
Z 2 e (226)

..................

]
2 mg = const.
Moreover, each phase has an equation of state of the form
2=f(v, 6, my, Mg, ... M) ; evrvrrrnrannnnnne (227)

and since we have made it a condition, that the pressure shall be
the same throughout the system, this gives us (i — 1) independent
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equations between the quantities of the set (225). Hence the
number of variables remaining quite independent is

[((K+1)+1]-K—(i-1)=iK-K+2.

If we use the inverse variables for the determination of the
states of the separate phases, we have, for the determination of
the state of the whole system, the (1K + 2) quantities :

D0, my, my ..omy

mhy, my, ... Mg
Among these there still exist the K equations of the set (226), so
that the number of independent variations is as before (K — K + 2),
which is the number of degrees of freedom of the system.

172, If we consider the state of each phase as determined by
the concentrations, so far as its possible influence on the other
phases is concerned, we have as our variables the (1K+2)
quantities

D6, ¢y g O

4 s
€ gy eee €'

.................

or in other words ; the K relations of the set (226) are now lack-
ing, and the system has (iK +2) degrees of freedom. We may,
then, impose af most (¢K + 2) conditions upon the variables of the
set (229). If we do so, not only the concentrations of all the
components in all the phases, but also the temperature and the
pressure, will be fixed : the system can satisfy the conditions only
for certain discrete points of the (p, ¢) plane, and it is nonvariant.
If we impose (iK+1) conditions, the temperature and pressure
may vary, but only along certain curves in the (p, ¢) plane, and
the system is univariant. If the number of conditions imposed
is less than ((K+1), the temperature and pressure may vary
simultaneously.
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Let us now ask : What are the conditions imposed by the fact
that the phases are in equilibrium, and how does the number of
these conditions depend upon the number of the coexistent
phases? In answering this question, we shall assume that each
of the K substances, of which the system is composed, is an

actual component of every one of the i phases.

178. Let us first consider a single phase containing the masses
m,, My, ... my of the various components, at the temperature 6
and the pressure p,—the pressure being that needed to preserve
the phase in equilibrium at the given temperature, when isolated
from the other phases. The equation of state of the phase will
have the form

p=f(v, 6, my, my ... Mg). cerenniininnnin. (230)

If the composition of the phase be invariable and the phase be
subject to any reversible change of state, the variation of its
internal energy is given by the equation

Se=08n—pdv;..ccoovvvinnnnininnnnnnn. (231)

and the internal energy is to be regarded as a function of the
entropy and the volume.

If, however, the phase be of variable composition, its internal
energy must be treated as a function of the masses, as well as of
the entropy and volume. This means that we may alter the
energy of the phase by forcing into it, reversibly, a mass ém of
any one of the components, and yet have the volume and entropy
of the phase the same after the change of composition as before
it. The statement about the volume presents no difficulty ; but
that about the entropy is not so clear in meaning. The mass &m
before it is forced into the phase, has its own entropy &y, and if
it is forced into combination with the phase, we must expect the
entropy of the united mass, after the combination, to be different
from the entropy of the phase alone at the beginning of the
process. We may, however, during the process, add to or take
away from the phase, such a quantity of heat as just to offset



173 APPLICATIONS 189

the increase of the entropy which would be caused if the forcing
in wero adiabatic. We may, in other words, make this addition
or withdrawal of heat such, that if the phase, with its altered
composition, passes reversibly from its actual state of temperature
and pressure to the normal state, keeping its composition constant,
the value of the integral j‘%? is the same as if the phase, with its
original composition, had passed reversibly from the state it was
then in to the same normal state. Thus the composition of the
phase will have been altered, though its volume and entropy will
be the same as before. The internal energy of the phase will, in
general, have changed during the change of composition ; for we
have no reason to assume that the heat withdrawn, during the
addition of the mass 8m, is equal to the work done on the mass
in forcing it into the phase.
If the phase be, then, considered as of variable composition, we

must write
e=f(n, v, My, Mg, . Mg)e eovinninninniinne (232)

For any reversible change of state we have

8<=(§_;>w & +(%5>mm8v + Zj:(%),, o ... (283)

where the subscript 7, v, m means, that 5, », and all the masses
except that referred to in the denominator, are to be kept

constant.
But we already know, that for a modification which leaves the

masses unchanged, the variation of the internal energy is given

by the equation .
(8€)n=1089 —p80. corevvieiiinninnniiane. (234)

Hence we see, that -

@_'7) = (235)

€
a_e .......................
(a”)n. m= K&
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(_3:) _
M) nam T

Let us also write

.....................

‘We now have, as the expression for the variation of the internal
energy of the phase during any reversible change of its volume,
entropy, and composition, the equation

K
Be=08) - pdv+ D pudm. ..o (237)
1

The quantity p*, is called the pofential of the component S, in
the phase 2.

174. Now consider the whole set of phases composing the
system, the total masses of the various components being in-
variable. For any reversible, infinitesimal modification of state,
we have the equation

where v is the total volume of the system, and where An=¥,

AQ being the heat absorbed from the outside by the whole
system. :
If we disregard surface energy, as we have agreed to do, we
have the equations :
i
Ae = z 3¢,
1

A,,=Z T U (239)

A@)=Z‘:8’U,
1

where the symbol A refers to the whole system, and the symbol &
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to the separate phases. By adding together the equations of
the form (237) for all the phases, and remembering that for
equilibrium the temperature and pressure must be uniform
throughout the system, we arrive at the equation

] 4 K
285:02&7—1)2&)+22/£8m. .......... (240)
1 1 1 . 1 1

By comparison with (239), this reduces to

i K
Ae= 00y —pAV+ DD M. v (241)
1 1

But we know that for any reversible, infinitesimal change of
state of any system taken as a whole,

Ae=007 — pAv. «.ocvviiiininninninnnn. (242)

Hence, if the phases are in equilibrium, so that all infinitesimal
changes are reversible, we have

% K
2T BI=0 (243)

Since the variations ém are all independent and arbitrary, with
the exception that

.

4 4 %
Siom=0; Di8my=0; ... D dmg=0;. ......(244)
1 1 1

it follows, that equation (243) can be satisfied only if

py=p =g ==y,
4 = !’ = /" R !
Po=p'y=p"y L (245)
Kr=p'r=p"s="..=t'n

These K(i-—1) independent equations must be fulfilled by the

potentials u,, py, ... pg, a8 a necessary condition of equilibrium.
As the state of the system is determined by the values of

the (iK+2) quantities of the set (229), these conditions of
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equilibrium (245) must be relations between those quantities.
The potentials must, therefore, be functions of those quantities,
and equations. (245) are equivalent to the same number of
equations between the quantities of the set (229).

176. We have for each phase an equation of state, of the form
p=f(v, 6, my, My ... Mg). ceovvvennnnnnnnn. (246)

Since the phase is homogeneous, the pressure needed for equi-
librium at a given temperature depends, not on the total
volume and the total masses of the components of the phase,
but on their ratios, i.e., on the concentrations. For to a unit
volume of the phase at the same temperature and concentrations,
we should have to apply the same pressure for equilibrium, as
to any other volume of the phase. Hence equation (246) is, in
reality, an equation connecting the pressure, the temperature,
and the concentrations ; and it may be written

(P 0,65 € oo Cx)=0. covviiinniinnnnn, (247)

There is an equation of this sort for each one of the i phases,
so that we have ¢ additional conditions imposed upon the
variables.

The eesult is, that upon the (iK + 2) degrees of freedom of
the system, we have imposed [K (i — 1) +¢] conditions as necessary,
if the set of 4 coexistent phases is to be in equilibrium. The
number of degrees of freedom remaining is therefore

((K+2)-[K(@E-1)+i]=K+2—i. ............(248)
From this it is evident, that if ‘
. i=K+2,

all the quantities of the set (229) are determined, and the system
is nonvariant. A set of (K +2) phases can exist in equilibrium
at certain discrete points in the (p, 6) plane ; but the temperature
and pressure can not be varied continuously. A greater number
of phases than (K+2) would impose more conditions on the
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system than it had degrees of freedom originally, and it is
therefore impossible that the number of phases coexistent in a
state of equilibrium should be greater than (X + 2).

If ¢=K+1, the system has one degree of freedom remaining :
hence (K+ 1) phases can coexist along lines in the (p, 6) plane,
and form a univariant system. At other points in the (p, 6)
plane, ¢ must be less than (K +1).

176. The conditions of equilibrium, which have been expressed
in equations (245), might have been obtained by slightly different
considerations. The difference is only formal to be sure, but
the second method is interesting.

Let thé thermodynamic potentials of the separate phases, at
constant pressure and temperature, be (', {”, ... . The thermo-
dynamic potential, Z, of the whole system of phases, will be
the sum of these—surface energy being disregarded—and we
have :

Z=§:) Lo (249)

The condition of equilibrium, at constant pressure and tem-
perature, is
8ZZ0. oo ...(250)

Since each component is an actual component of every phase, any
virtual variation of state which is possible in one direction ig

also possible in the other. .The condition (250) thus reduces
to

which may also be written

ﬁ‘, SE=0. veeeeeeeeeeeeerereen (252}

Since the only changes are those of the masses, this again may
be written in the form
1 K
=3

T | R (253)

2§
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But the variations m are subject only to the conditions

$m=o; im,-o, cee O8Ce rereenennanas (254)

Hence from (253) we see, that the condition of equilibrium is
equivalent to the equations

o o )

om, om, " omy

o S

omg Oomy, T Om) G (255)
off _of” &

%;_an"= vee —ay'l"}

which, as before, are K (i ~ 1) in number.
Now for any particular phase, we have the equation

8e= 03y -p80+2:;p,8m; ....... e (2566)
and if, as usual, we define { by the equation
(=€ Oqab 0 e (267)
we have
8= —1180+v&)+$,u&m; .................. (258)
or in other words,
X . of

Fl:%l, F'g=a'72 PR - (259)
The equations (255) are therefore identical with the equations
(245).

The method of proof first employed consisted virtually in using
the isentropic potential ¢ In the second method we have used
the isothermal potential { We might also have used the
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isothermal potential ¥ or the isentropic potential x, the different
methods being based on the consideration of different forms of
the same equation. This is equivalent to the statement that the
potentials x may be expressed in various ways, depending on
what variables we select as defining the state of the system. For
if, for a single phase, we write, as usual,

¢="’0’77
(=e—Onp+py, L ol (260)
X=€c+pv;
we have
K
Se= os«,-p&:+zl)y8m,
K
S = —1080 - pdv+ >, udm,
:, b eeerererraees (261)
x
o= 081)+'v8p+2p.8m;
whence ’

#ﬁ(’c;ir;:),,,.,f % b 835,)0,,,.,.=(% ., (262

177. A complete treatment of the question of the equilibrium
of a system of homogeneous phases requires the removal of
several restrictions, which have been imposed in order to simplify
the problem. The components of a mixture are, in general, not
actual components of all the phases, so that the effect of this
limitation has to be considered. Furthermore, we have not dis-
cussed the effect of capillarity, solidity, possibility of chemical
combination of the different components, etc. Any such com-
plete discussion would be merely a reproduction of the memoir of
Professor Gibbs “On the Equilibrium of Heterogeneous Sub-
stances.”* As one of the main objects of the present book has

* T'rans, Conn. Acad. 8,
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been to prepare the reader for an intelligent study of that
memoir, any further treatment of the subject would be super-
fluous here. For a complete qualitative account of the application
of the phase rule to the problems of physical chemistry the reader
is referred to the recent work of Professor Wilder D. Bancroft. *

* The Phase Rule, Ithaca, N.Y,, 1897, published by The Journal of
Physical Chemistry.
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of, 141.

s physical, 59.

» thermochemical, 59-61.
Real processes, 32, 33, 35.
Reech’s theorem, 81.

Reference books, 197, 198.
Reversible cycle, efficiency of, 98,
102, 103.

. dilution of a solution,

146, 147.
" galvanic cell, 139.
’ Pprocesses, 35, 36, 94-96,

151.
» ,»  heat observed
during, 96.

8cale, absolute gas, 5-7.
,» absolute thermodynamic,
103, 104.

»» Celsius, or centigrade, 5.
Scales of work diagrams, 39.
Second law of thermodynamics,

97, 98, 110.

Semi-permeable piston, 146.
Soap bubble, 29.
Specific heats, 50.
' ,» of fluids, 68-76, 81-
84.
’e s of fluids, ratio of, 73,
81-84.
Stability of equilibrium, 159, 162,
168, 181, 182,
» . of phases,
179.
State, equations of, 18, 19, 23, 186.
,»» of a system, 17.
,» of a system, ‘‘complete”
determination of, 20.
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Static experiments, equations de-
duced from, 80, 81.
Sublimation curve, 176.
Summary of conditions and hypo-
thesis, 149, 150.
Supercooling, 183.
Surfaces, thermodynamic, 182.
Surface tension, 30.
System, degrees of freedom of a,
18.
s  given, 17.
»»  properties of a, 17-19.
,s  state of a, 17-19.
,»  subject to uniform pres-
cure, 119, 120.
,»  thermodynamic, 17, 87,
88.
Systems with equations of equili-
briam, 25, 26.
,, with more than three
degrees of freedom, 24.
,»  with no internal variables
except the temperature,
164. )
,, with three degrees of
freedom, 23, 24.
,»  withoutequations of equi-
librium, 25, 26.

Temperature, absolute thermo-
dynamic, 103,
104, 127, 133-137.

' at a point, 7.

» of components in &
mixture, 2.

» uniform, 3.

’ use of the term, 155,
156.

Temperatures, comparison of, 3.
s equality of, 1, 2.
” of sources and

sinks, 156.

INDEX

Tension, surface, 30.
Theorem of Carnot, 100.
» of Clausius, 110.
Theory, approximate nature of the,
20

Thermal capacity, 49, 50.

,  coefficients, 49, 50.

»»  units, 12, 13.
Thermochemical reactions, 59-61.
Thermochemistry, problem of, 59.
Thermodynamic potential at con-

stant pressure,

163.

»”» potential at con-
stant volume,
161.

’» potential, inter-
nal, 159.

. potential, total,
162.

s systems, 17, 87,
88.

9 temperature, 103,
104, 127, 133-
137.

Thermodynamics defined, 16.

,, first law of, 51-
53, 88-93.

’ second law of,

97, 98, 110.
Thermometers, 4-6.
Thermometric substances, 4.
Thomson, James, on the freezing
point of water, 145.
Thomson, William, see Kelvin;
also Joule and Thomeson.
'1‘01:;%2 thermodynamic potential,

Triple point, 178.

Unit of heat, 12, 13.

” ,,» mechanical, 15.
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Values of forms of energy, 56, 57. Variables treated as constant, 19,
Vapours, supersaturated, 47. - 20.
Variables, 18. Variance of systems of phases, 180,
»» changes of internal, 159, 187, 192, 193.
160, 164, 165. Velocities of changes of state, 33.
» choice of independent,
31, 32. Water, freezing point of, altered
»» dependent and inde- by pressure, 145.
pendent, 18, 19, Work diagrams, 33-40.
» independent, 43, 44. ,» diagrams do not represent
»» internal and external, changes of state, 35.
31, 32. »» done in compressing a gas,
» inverse, 43-45. 37, 38.
” needed for a system of »» done on a system, 27, 31,
phases, 179, 180, 186, 32.
187. ,» obtainable from a system,
” normul, 32. 169.
» remarks on, 159, 160,
163-167. Zero, absolute, of gas scale, 6.
ERRATA.
Page 80, line 15—for *‘equation of condition” read ‘equation of state.”
”» 819 ” 3_ ” ” » ”
” 84’ ” 8_ ” ” 2 ”

» 88, ,, 2and 6—for ‘““equations of condition” read *equations of
state.”
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